
Copyright 2010 by Pearson Education

Building Java Programs

Chapter 8
Lecture 8-4: Static Methods and Fields

Copyright 2010 by Pearson Education
2

Multi-class systems
Most large software systems consist of many classes.

One main class runs and calls methods of the others.

Advantages:
code reuse
splits up the program logic into manageable chunks

Main Class #1
main

method1

method2

Class #2
method3

method5

Class #3
method4

method6

Copyright 2010 by Pearson Education
3

Redundant program 1
// This program sees whether some interesting numbers are prime.
public class Primes1 {

public static void main(String[] args) {
int[] nums = {1234517, 859501, 53, 142};
for (int i = 0; i < nums.length; i++) {

if (isPrime(nums[i])) {
System.out.println(nums[i] + " is prime");

}
}

}

// Returns the number of factors of the given integer.
public static int countFactors(int number) {

int count = 0;
for (int i = 1; i <= number; i++) {

if (number % i == 0) {
count++; // i is a factor of the number

}
}
return count;

}

// Returns true if the given number is prime.
public static boolean isPrime(int number) {

return countFactors(number) == 2;
}

}

Copyright 2010 by Pearson Education
4

Redundant program 2
// This program prints all prime numbers up to a
maximum.

public class Primes2 {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);
System.out.print("Max number? ");
int max = console.nextInt();
for (int i = 2; i <= max; i++) {

if (isPrime(i)) {
System.out.print(i + " ");

} }
System.out.println();

}

// Returns true if the given number is prime.
public static boolean isPrime(int number) {

return countFactors(number) == 2;
}

// Returns the number of factors of the given
integer.

public static int countFactors(int number) {

Copyright 2010 by Pearson Education
5

Classes as modules
module: A reusable piece of software, stored as a class.

Example module classes: Math, Arrays, System

// This class is a module that contains useful methods
// related to factors and prime numbers.
public class Factors {

// Returns the number of factors of the given integer.
public static int countFactors(int number) {

int count = 0;
for (int i = 1; i <= number; i++) {

if (number % i == 0) {
count++; // i is a factor of the number

}
}

return count;
}

// Returns true if the given number is prime.
public static boolean isPrime(int number) {

return countFactors(number) == 2;
}

}

Copyright 2010 by Pearson Education
6

More about modules
A module is a partial program, not a complete program.

It does not have a main. You don't run it directly.
Modules are meant to be utilized by other client classes.

Syntax:

class.method(parameters);

Example:
int factorsOf24 = Factors.countFactors(24);

Copyright 2010 by Pearson Education
7

Using a module
// This program sees whether some interesting numbers are prime.
public class Primes {

public static void main(String[] args) {
int[] nums = {1234517, 859501, 53, 142};
for (int i = 0; i < nums.length; i++) {

if (Factors.isPrime(nums[i])) {
System.out.println(nums[i] + " is prime");

}
}

}
}

// This program prints all prime numbers up to a given maximum.
public class Primes2 {

public static void main(String[] args) {
Scanner console = new Scanner(System.in);
System.out.print("Max number? ");
int max = console.nextInt();
for (int i = 2; i <= max; i++) {

if (Factors.isPrime(i)) {
System.out.print(i + " ");

} }
System.out.println();

}
}

Copyright 2010 by Pearson Education
8

Modules in Java libraries
// Java's built in Math class is a module
public class Math {

public static final double PI = 3.14159265358979323846;

...

public static int abs(int a) {
if (a >= 0) {

return a;
} else {

return -a;
}

}

public static double toDegrees(double radians) {
return radians * 180 / PI;

}
}

Copyright 2010 by Pearson Education
9

Critter exercise: FratGuy
All the frat guys are trying to get to the same party.

The party is at a randomly-generated board location
(On the 60-by-50 world)

They stumble north then east until they reach the party

Copyright 2010 by Pearson Education
10

A flawed solution
import java.util.*; // for Random

public class FratGuy extends Critter {
private int partyX;
private int partyY;

public FratGuy() {
Random r = new Random();
partyX = r.nextInt(60);
partyY = r.nextInt(50);

}

public Direction getMove() {
if (getY() != partyY) {

return Direction.NORTH;
} else if (getX() != partyX) {

return Direction.EAST;
} else {

return Direction.CENTER;
}

}
}

Problem: Each frat guy goes to his own party.
We want all frat guys to share the same party location.

Copyright 2010 by Pearson Education
11

Static members
static: Part of a class, rather than part of an object.

Object classes can have static methods and fields.
Not copied into each object; shared by all objects of that class.

class
state:
private static int staticFieldA
private static String staticFieldB

behavior:
public static void someStaticMethodC()
public static void someStaticMethodD()

object #1
state:
int field2
double field2

behavior:
public void method3()
public int method4()
public void method5()

object #2
state:
int field1
double field2

behavior:
public void method3()
public int method4()
public void method5()

object #3
state:
int field1
double field2

behavior:
public void method3()
public int method4()
public void method5()

Copyright 2010 by Pearson Education
12

Static fields
private static type name;
or,
private static type name = value;

Example:
private static int theAnswer = 42;

static field: Stored in the class instead of each object.
A "shared" global field that all objects can access and modify.
Like a class constant, except that its value can be changed.

Copyright 2010 by Pearson Education
13

Accessing static fields
From inside the class where the field was declared:

fieldName // get the value
fieldName = value; // set the value

From another class (if the field is public):

ClassName.fieldName // get the value
ClassName.fieldName = value; // set the value

generally static fields are not public unless they are final

Exercise: Modify the BankAccount class shown previously
so that each account is automatically given a unique ID.
Exercise: Write the working version of FratGuy.

Copyright 2010 by Pearson Education
14

BankAccount solution
public class BankAccount {

// static count of how many accounts are created
// (only one count shared for the whole class)
private static int objectCount = 0;

// fields (replicated for each object)
private String name;
private int id;

public BankAccount() {
objectCount++; // advance the id, and
id = objectCount; // give number to account

}

...

public int getID() { // return this account's id
return id;

}
}

Copyright 2010 by Pearson Education
15

FratGuy solution
import java.util.*; // for Random

public class FratGuy extends Critter {
// static fields (shared by all frat guys)
private static int partyX = -1;
private static int partyY = -1;

// object constructor/methods (replicated into each frat guy)
public FratGuy() {

if (partyX < 0 || partyY < 0) {
Random r = new Random(); // the 1st frat guy created
partyX = r.nextInt(60); // chooses the party location
partyY = r.nextInt(50); // for all frat guys to go to

}
}

public Direction getMove() {
if (getY() != partyY) {

return Direction.NORTH;
} else if (getX() != partyX) {

return Direction.EAST;
} else {

return Direction.CENTER;
}

}
}

Copyright 2010 by Pearson Education
16

Static methods
// the same syntax you've already used for methods
public static type name(parameters) {

statements;
}

static method: Stored in a class, not in an object.

Shared by all objects of the class, not replicated.
Does not have any implicit parameter, this;
therefore, cannot access any particular object's fields.

Exercise: Make it so that clients can find out how many
total BankAccount objects have ever been created.

Copyright 2010 by Pearson Education
17

BankAccount solution
public class BankAccount {

// static count of how many accounts are created
// (only one count shared for the whole class)
private static int objectCount = 0;

// clients can call this to find out # accounts created
public static int getNumAccounts() {

return objectCount;
}

// fields (replicated for each object)
private String name;
private int id;

public BankAccount() {
objectCount++; // advance the id, and
id = objectCount; // give number to account

}

...

public int getID() { // return this account's id
return id;

}
}

Copyright 2010 by Pearson Education
18

Summary of Java classes
A class is used for any of the following in a large program:

a program : Has a main and perhaps other static methods.
example: GuessingGame, Birthday, MadLibs, CritterMain
does not usually declare any static fields (except final)

an object class : Defines a new type of objects.
example: Point, BankAccount, Date, Critter, FratGuy

declares object fields, constructor(s), and methods
might declare static fields or methods, but these are less of a focus
should be encapsulated (all fields and static fields private)

a module : Utility code implemented as static methods.
example: Math

Copyright 2010 by Pearson Education
19

Advanced FratGuy exercise
A party is no fun if it's too crowded.

Modify FratGuy so that a party will be attended
by no more than 10 frat guys.

Every 10th frat guy should choose a new party location for
himself and the next 9 of his friends to be constructed.

first ten frat guys go to party #1
next ten frat guys go to party #2
...

Copyright 2010 by Pearson Education
20

Advanced FratGuy solution
import java.util.*; // for Random

public class FratGuy extends Critter {
// static fields (shared by all frat guys)
private static int ourPartyX = -1;
private static int ourPartyY = -1;
private static int objectCount = 0;

// chooses the party location for future frat guys to go to
public static void choosePartySpot() {

Random r = new Random();
ourPartyX = r.nextInt(60);
ourPartyY = r.nextInt(50);

}

// object fields/constructor/methods (replicated in each frat guy)
private int myPartyX;
private int myPartyY;

...

Copyright 2010 by Pearson Education
21

Advanced FratGuy solution 2
...

public FratGuy() {
// every 10th one chooses a new party spot for future FratGuys
if (objectCount % 10 == 0) {

choosePartySpot();
}

// must remember his party spot so they aren't all the same
myPartyX = ourPartyX;
myPartyY = ourPartyY;

}

public Direction getMove() {
if (getY() != myPartyY) {

return Direction.NORTH;
} else if (getX() != myPartyX) {

return Direction.EAST;
} else {

return Direction.CENTER;
}

}
}

