Building Java Programs

Chapter 8
Lecture 8-4: Static Methods and Fields

| rprr—

_ Copyright 2010 by Pearson Education

Multi-class systems

* Most large software systems consist of many classes.
 One main class runs and calls methods of the others.

S

 Advantages:
* code reuse
» splits up the program logic into manageable chunks

Main Class #1

main

methodl

method?2

. .
Class #2 Class #3

method3 method4
method5 methodé

———— Copyright 2010 by Pearson Education

Redundant program 1

// This program sees whether some interesting numbers are prime.
public class Primesl {
public static void main(String[] args) {
int[] nums = {1234517, 859501, 53, 142};

Eoraatin bt i e e s e ol e e
if (isPrime (nums[i]))
R R oY =S (1 e 1B Bty O gL B By Y9 R DR 1) = T o B s S 9 = S © 5 a1 1\ = A)

}
}

// Returns the number of factors of the given integer.
public static int countFactors(int number)

1 LS Sl | ARGt D
for (int i = 1; i <= number; i++) {
if (number % i == 0) {
count++; // i is a factor of the number

}
}
return count;

}

// Returns true if the given number is prime.
public static boolean isPrime (int number)
return countFactors (number) == 2;

~ Copyright 2010 by Pearson Education

Redundant program 2

// This program prints all prime numbers up to a
maximum.

public class Primes2 {
public static void main(String[] args) {

Scanner console = new Scanner (System.in) ;
SR AN BA R A OR s AN AU RS AR Sy SR
int max = console.nextInt () ;
o e a T EoL) e e
if (isPrime(i))

Sy:Stems oty prriaasgtiaaii

.

Sysiemsols T Dusk e

)

// Returns true if the given number is prime.
public static boolean isPrime(int number) {
return countFactors (number) == 2;

// Returns the number of factors of the given
integer.

— Copyright Mmgjﬂ-—aomﬂaﬁoxghwgﬂ_[—

Classes as modules

* module: A reusable piece of software, stored as a class.
» Example module classes: Math, Arrays, System

// This class is a module that contains useful methods

// related to factors and prime numbers.

public class Factors {
// Returns the number of factors of the given integer.
publicistatictinteountEactors fintEnumber

e o B BB Y e Al
for (int i = 1; i <= number; i++) {
LE S number s 1 ms 095
count++; // 1 is a factor of the number

}
}

return count;

}

// Returns true if the given number is prime.
public static boolean isPrime (int number)
return countFactors (number) == 2;

}

Copyright 2010 by Pearson Education

——
\ T it
B L et

More about modules

* A module is a partial program, not a complete program.

I

» It does not have a main. You don't run it directly.
 Modules are meant to be utilized by other client classes.

e Syntax:

class. method (parameters) ;

e Example:

int factorsOf24 = Factors.countFactors (24) ;

~_ Copyright 2010 by Pearson Education

.

Using a module

// This program sees whether some interesting numbers are prime.
public class Primes ({
pubilicistatic void main{Stringllargs) i
ol YA B o1 b (|- e ke P e R Ry A SRe Loy o B I b o A

For stintois—g st mamabengt i d sy
if (Factors.isPrime (nums[i])) {
A SN A = | A 1Ll R YA 9 1 o o S R A N A 5 WU 111 FT B o S e Ve o i 01 (e

}

}

// This program prints all prime numbers up to a given maximum.
public class Primes2

public static void main(Stringl[] args) {

Scanner console = new Scanner (System.in) ;
System.out .print ("Max number? ") ;

int max = console.nextInt () ;

for (int i = 2; i <= max; i++) {

if (Factors.isPrime(i))
System-eubrprinEfi ety
!

System.out.println() ;

Copyright 2010 by Pearson Education

-

Modules in Java libraries

// Java's built in Math class is a module
public class Math {
D5 3 o e S B Sl R il o v fe i Do M b d B Lo s R AR R e S A SO Rt s

public static int abs(int a) {
Hela s]
return a;
} else {
return -a;
}

}

public static double toDegrees(double radians) {
return radians * 180 / PI;
}

Copyright 2010 by Pearson Education

Critter exercise: FratGuy

o All the frat guys are trying to get to the same party.

* The party is at a randomly-generated board location
(On the 60-by-50 world)

* They stumble north then east until they reach the party

-

Copyright 2010 by Pearson Education

A flawed solution

import java.util.*; // for Random

public class FratGuy extends Critter ({
private int partyX;
private int partyY;

public FratGuy () {
Random r = new Random() ;
partyX = r.nextInt (60);
partyY = r.nextInt (50);

public Direction getMove () {
i ErfgetY il partyY)d
return Direction.NORTH;
} else if (getX() != partyX) {
b ¥, 19% I 0 R B B B el { S o L) e L e
} else {

return Direction.CENTER:;

}

» Problem: Each frat guy goes to his own party.
We want all frat guys to share the same party location.

- Copyright 2010 by Pearson Education

10

Static members

o static: Part of a class, rather than part of an object.
» Object classes can have static methods and fields.
» Not copied into each object; shared by all objects of that class.

class

state:
private static int staticFieldA

private static String staticFieldB

behavior:
public static void someStaticMethodcC ()

public static void someStaticMethodD ()

object #1 object #2 object #3
state: state: state:
int field2 int fieldl int fieldl
double field2 double field2 double field2
behavior: behavior: behavior:
public void method3 () public void method3 () public void methods3 ()
public int method4 () public int method4 () public int method4 ()
public void methods5 () public void methods5 () public void methods5 ()

~ Copyright 2010 by Pearson Education

1k

Static fields
private static type name;

or,
private static type name = value;

 Example:
private static int theAnswer = 42;

o static field: Stored in the class instead of each object.
» A "shared" global field that all objects can access and modify.
» Like a class constant, except that its value can be changed.

- il
~ " Copyright 2010 by Pearson Education

Accessing static fields

From inside the class where the field was declared:

fieldName // get the wvalue
fieldName = value; // set the wvalue

From another class (if the field is public):
ClassName.fieldName // get the value
ClassName.fieldName = value; // set the value

» generally static fields are not public unless they are f£inal

Exercise: Modify the BankAccount class shown previously
so that each account is automatically given a unique ID.

Exercise: Write the working version of FratGuy.

~ Copyright 2010 by Pearson Education

13

publ

=

"

~__ Copyright

e e — — —

BankAccount solution

ic class BankAccount (

// static count of how many accounts are created
// (only one count shared for the whole class)
private static int objectCount = 0;

// fields (replicated for each object)
private String name;
private int id;

public BankAccount ()

objectCount++; // advance the id, and
id = objectCount; // give number to account

public int getID() { // return this account's id
return id;
}

2010 by Pearson Education

\ oS

14

FratGuy solution

import java.util.*; // for Random

public class FratGuy extends Critter ({
// static fields (shared by all frat guys)
private static int partyX = -1;
private static int partyY = -1;

// object constructor/methods (replicated into each frat guy)
public FratGuy () (

if (partyXi< 0 [party¥ < 0)
Random r = new Random() ; // the 1lst frat guy created
partyX = r.nextInt (60) ; // chooses the party location
O o AV e o IR e e o B AN e B Do ST Roos i asden - ol ook o5 wg ANSESe 1 T AL S o Vo L] r
}
public Direction getMove () {
if (getY() != partyY) {
return Direction.NORTH;
} else if (getX() != partyX) {
return Direction.EAST;
} else {

return Direction.CENTER;

}

15

~ Copyright 2010 by Pearson Education

Static methods

// the same syntax you've already used for methods

public static type name (parameters) {
statements;
}

» static method: Stored in a class, not in an object.

» Shared by all objects of the class, not replicated.

» Does not have any implicit parameter, this;
therefore, cannot access any particular object's fields.

e Exercise: Make it so that clients can find out how many
total BankAccount objects have ever been created.

et H]
] — Copyright 2010 by Pearson Education

e e

}

private String name;
private int id;

public BankAccount ()
objectCount++;
(e o) ol iV e kel e b ke p]

}

public int getID() {
} ol =R el b B &0 R 0 1

~ Copyright 2010 by Pearson Education

{

BankAccount solution

public class BankAccount {

// static count of how many accounts are created
// (only one count shared for the whole class)
private static int objectCount = 0;

// fields (replicated for

e
——
-
\ e .

// clients can call this to find out # accounts created
public static int getNumAccounts() {
return objectCount;

each object)

advance the id, and
give number to account

return this account's id

17

e ———————— —

Summary of Java classes

e A class is used for any of the following in a large program:

* a program : Has a main and perhaps other static methods.
« example: GuessingGame, Birthday, MadLibs, CritterMain
« does not usually declare any static fields (except f£inal)

» an object class : Defines a new type of objects.
« example: Point, BankAccount, Date, Critter, FratGuy
« declares object fields, constructor(s), and methods
« might declare static fields or methods, but these are less of a focus
« should be encapsulated (all fields and static fields private)

» a module : Utility code implemented as static methods.
« example: Math

s S 18
. Copyright 2010 by Pearson Education

——
\ e
ST

- Advanced FratGuy exercise

e A party is no fun if it's too crowded.

* Modify FratGuy so that a party will be attended
by no more than 10 frat guys.

o Every 10th frat guy should choose a new party location for
himself and the next 9 of his friends to be constructed.

« first ten frat guys go to party #1
« next ten frat guys go to party #2

IRS)

———— Copyright 2010 by Pearson Education

Advanced FratGuy solution

import java.util.*; // for Random

public class FratGuy extends Critter {
// static fields (shared by all frat guys)

private static int ourPartyX = -1;
private static int ourPartyY = -1;
private static int objectCount = 0;

// chooses the party location for future frat guys to go to
public static void choosePartySpot() {

Random r = new Random() ;

ourPartyX = r.nextInt (60) ;

ourPartyY = r.nextInt (50);

// object fields/constructor/methods (replicated in each frat guy)
private int myPartyX;
private int myPartyY;

20

~ Copyright 2010 by Pearson Education

e _ —

Advanced FratGuy solution 2

public FratGuy () {
// every 1l0th one chooses a new party spot for future FratGuys
if (objectCount % 10 == 0) {
choosePartySpot () ;
}

// must remember his party spot so they aren't all the same
myPartyX = ourPartyX;
myPartyY = ourPartyyY;

}

public Direction getMove () {
if (getY() != myPartyY) {
return Direction.NORTH;
} else if (getX() != myPartyX) {
return Direction.EAST;
} else {

return Direction.CENTER;

}

21

Copyright 2010 by Pearson Education

