
expressions, variables,
and for loops

(oh my!)

spam, spam, spam, spam
http://www.youtube.com/watch?v=anwy2MPT5RE

http://www.youtube.com/watch?v=anwy2MPT5RE
http://www.youtube.com/watch?v=anwy2MPT5RE

expressions

• for the most part, similar to Java

• plus ** for exponentiation

• () before ** before * / % before + -

variables

• no type is written when declaring

• use += and -= instead of ++ and --

 1 int x = 2;
 2 x++;
 3 System.out.println(x);
 4
 5 x = x * 8;
 6 System.out.println(x);
 7
 8 double d = 3.2;
 9 d = d / 2;
10 System.out.println(d);

 1 x = 2
 2 x += 1
 3 print x
 4
 5 x *= 8
 6 print x
 7
 8 d = 3.2
 9 d /= 2
10 print d

vs.

types

• python and Java use different names for
some types

• use the type function to determine
something’s type

>>> type(42)
<type 'int'>
>>> type(3.14)
<type 'float'>
>>> type("spam")
<type 'str'>

python doesn’t care
about types

• don’t need to specify type when declaring a
variable

• variables can be reassigned to have a
different type

python cares about
types

• types still govern which operations are
allowed

>>> "23" - 5
TypeError: unsupported operand type(s) for -: 'str' and 'int'

• everything still has a type
>>> n = 23
>>> type(n)
<type 'int'>

concatenation

• solution: explicitly cast to str

>>> x = 4
>>> print "Thou shalt not count to " + x + "."
TypeError: cannot concatenate 'str' and 'int' objects

>>> print "Thou shalt not count to " + str(x) + "."
Thou shalt not count to 4.

• alternatively...

print, revisited

prints two values, separated by a space
print value1, value2

>>> print "Thou shalt not count to ", x
Thou shalt not count to 4
>>> print x + 1, "is out of the question."
5 is out of the question.

• can be used to solve our concatenation
problem

for loops

• repeats statements, from 0 (inclusive) to
max (exclusive)

for name in range(max):
 statement
 statement
 ...
 statement

for loops, continued

• can specify a min other than 0, and a step
other than 1

• counts from min (inclusive) to max
(exclusive) in increments of step

for name in range(min, max):
 statements

for name in range(min, max, step):
 statements

string multiplication!

"yo " * 10

string multiplication

• can often replace nested loops

1 for (int line = 1; line <= 5; line++) {
2 for (int j = 1; j <= (5 - line); j++) {
3 System.out.print(".");
4 }
5 System.out.println(line);
6 }

vs.

1 for line in range(1, 6):
2 print (5 - line) * "." + str(line)

constants

• don’t exist in python!

• instead, use a variable and pretend it can’t
be changed

1 NUM_FISHES = 5
2
3 def how_many_fishes():
4 print "there are", NUM_FISHES, "fishes."

getting help

• use the help function to learn about a type

>>> help(str)
Help on class str in module __builtin__:

class str(basestring)
 | str(object) -> string
 |
 | Return a nice string representation of the object.
 | If the argument is a string, the return value is the same object.

...

exercise
rewrite Mirror.java in python

#================#
| <><> |
| <>....<> |
| <>........<> |
|<>............<>|
|<>............<>|
| <>........<> |
| <>....<> |
| <><> |
#================#

(make sure your figure can be resized with a “constant”)

mirror.py
 1 SIZE = 4
 2
 3 def bar():
 4 print "#" + 4 * SIZE * "=" + "#"
 5
 6 def top():
 7 for line in range(1, SIZE + 1):
 8 # split a long line by ending it with \
 9 print "|" + (-2 * line + 2 * SIZE) * " " + \
 10 "<>" + (4 * line - 4) * "." + "<>" + \
 11 (-2 * line + 2 * SIZE) * " " + "|"
 12
 13 def bottom():
 14 for line in range(SIZE, 0, -1):
 15 print "|" + (-2 * line + 2 * SIZE) * " " + \
 16 "<>" + (4 * line - 4) * "." + "<>" + \
 17 (-2 * line + 2 * SIZE) * " " + "|"
 18
 19 # main
 20 bar()
 21 top()
 22 bottom()
 23 bar()

range concatenation

• ranges can be concatenated with +

• can be used to loop over multiple ranges at
once

>>> range(1, 5) + range(10, 15)
[1, 2, 3, 4, 10, 11, 12, 13, 14]

>>> for i in range(4) + range(10, 7, -1):
... print i
0
1
2
3
10
9
8

mirror2.py
 1 SIZE = 4
 2
 3 def bar():
 4 print "#" + 4 * SIZE * "=" + "#"
 5
 6 def mirror():
 7 for line in range(1, SIZE + 1) + range(SIZE, 0, -1):
 8 print "|" + (-2 * line + 2 * SIZE) * " " + \
 9 "<>" + (4 * line - 4) * "." + "<>" + \
 10 (-2 * line + 2 * SIZE) * " " + "|"
 11
 12 # main
 13 bar()
 14 mirror()
 15 bar()

