

Data types

- type: A category or set of data values.
- Constrains the operations that can be performed on data
- Many languages ask the programmer to specify types
- Examples: integer, real number, string
- Internally, computers store everything as 1 s and 0 s
$104 \rightarrow 01101000$
"hi" $\boldsymbol{\rightarrow} 0110100001101001$

Java's primitive types

- primitive types: 8 simple types for numbers, text, etc. - Java also has object types, which we'll talk about later

Name	Description		Examples
int	integers	(up to $2^{31}-1$)	42, -3, 0, 926394
double	real numbers	(up to 10 $0^{\text {³8 }}$)	3.1, $-0.25,9.4 \mathrm{e} 3$
char	single text cha	acters	'a', 'X', '?',
boolean	logical values		true, false

- Why does Java distinguish integers vs. real numbers?

Copyright 2010 by Pearson Education

Arithmetic operators

- operator: Combines multiple values or expressions.
+ addition
- subtraction (or negation)
multiplication
/ division
\% modulus (a.k.a. remainder)
- As a program runs, its expressions are evaluated.
- 1 + 1 evaluates to 2
- System.out.println(3 * 4); prints 12
- How would we print the text $3 * 4$?

Integer division with /

- When we divide integers, the quotient is also an integer. - 14 / 4 is 3 , not 3.5
(4) $\begin{array}{r}3 \\ \frac{14}{2}\end{array}$

10 $\begin{array}{r}4 \\ \begin{array}{r}45 \\ \hline\end{array} \\ \\ \hline\end{array}$
$2 7 \longdiv { 5 2 } \begin{array} { r } { 1 4 2 5 } \\ { \hline 1 3 5 } \end{array}$
135
$\frac{15}{75}$
$\frac{54}{21}$

- More examples:
- 32 / 5 is 6
- $84 / 10$ is 8
- $156 / 100$ is 1
- Dividing by 0 causes an error when your program runs.
- copright 2010 by Pearson Eucation \qquad

Precedence

- precedence: Order in which operators are evaluated.
- Generally operators evaluate left-to-right.
$1-2-3$ is $(1-2)-3$ which is -4
- But * / \% have a higher level of precedence than + -
$1+3$ * 4
is 13
$6+8 / 2 * 3$
$6+4{ }^{2}+3$
is 18
- Parentheses can force a certain order of evaluation: $(1+3)$ * 4 is 16
- Spacing does not affect order of evaluation $1+3$ * 4-2 is 11

Copyright 2010 by Pearson Education

Precedence questions

- What values result from the following expressions?
-9/5
- 695 \% 20
- 7 + 6 * 5
- 7 * 6 + 5
- $248 \div 100 / 5$
- 6 * 3 - $9 / 4$
- $(5-7)$ * 4
- $6+(18 \div(17-12))$

Integer remainder with \%

- The \% operator computes the remainder from integer division.

- $14 \% 4$ is 2

- $218 \% 5$ is 3

- Applications of \% operator:
- Obtain last digit of a number: 230857 \% 10 is 7
- Obtain last 4 digits: $658236489 \% 10000$ is 6489
- See whether a number is odd: $7 \% 2$ is $1,42 \% 2$ is 0

Real numbers (type double)

- Examples: 6.022, -42.0, 2.143e17
- Placing . 0 or . after an integer makes it a double.
- The operators + - * / \% () all still work with double.
- / produces an exact answer: $15.0 / 2.0$ is 7.5
- Precedence is the same: () before $* / \%$ before + -

String concatenation

- string concatenation: Using + between a string and another value to make a longer string.

$$
\begin{array}{ll}
\text { "hello" }+42 & \text { is "hello42" } \\
1+\text { "abc" }+2 & \text { is "1abc2" } \\
\text { "abc" + + + } & \text { is "abc12" } \\
1+2+\text { +abc" } & \text { is "3abc" } \\
\text { "abc" + }+ \text { * } & \text { is "abc27" } \\
\text { "1" }+1 & \text { is "11" } \\
4-1+\text { "abc" } & \text { is "3abc" }
\end{array}
$$

- Use + to print a string and an expression's value together.
- System.out.println("Grade: " + (95.1 + 71.9) / 2);
- Output: Grade: 83.5

Copright 2010 by Pearson Eucation

Receipt example

What's bad about the following code?
public class Receipt \{
public static void main(String[] args)
// Calculate total owed, assuming 8\% tax / 15\% tip
System.out.println("Subtotal:");
System.out.println $(38+40+30)$
System.out.println("Tax:");
System.out.println $((38+40+30) * .08)$
System.out.println("Tip:");
System.out.println $((38+40+30) * .15)$
System.out.println("Total:");
System.out.println $(38+40+30+$ * $(38+40+30) * .08+$
$(38+40+30) * .15)$;
1

- The subtotal expression $(38+40+30)$ is repeated
- So many println statements

Variables

- variable: A piece of the computer's memory that is given a name and type, and can store a value.
- Like preset stations on a car stereo, or cell phone speed dial:

- Steps for using a variable:
- Declare it - state its name and type
- Initialize it - store a value into it
- Use it - print it or use it as part of an expression

Copyright 2010 by Pearson Education

Assignment and algebra

- Assignment uses $=$, but it is not an algebraic equation.
. = means, "store the value at right in variable at left"
- The right side expression is evaluated first, and then its result is stored in the variable at left.
- What happens here?
int $x=3$;
$\mathbf{x}=\mathbf{x}+2$; // ???

Assignment

- assignment: Stores a value into a variable.
- The value can be an expression; the variable stores its result.
- Syntax:
name = expression;
- int zipcode;
zipcode $=90210$

- double myGPA;
my $\operatorname{mPA}=1.0+2.25$;

Copyright 2010 by Pearson Education
20

Declaration/initialization

- A variable can be declared/initialized in one statement.
- Syntax:
type name = value;
- double myGPA = 3.95;

- int $\mathrm{x}=(11 \% 3)+12$;

22

Assignment and types

- A variable can only store a value of its own type.
- int $x=2.5$; // ERROR: incompatible types
- An int value can be stored in a double variable.
- The value is converted into the equivalent real number.
- double myGPA = 4;

- double avg = 11 / 2;
- Why does avg store 5.0

| avg | 5.0 |
| :--- | :--- | and not 5.5 ?

Copyright 2010 by Pearson Education
24

