

Test

for (int $i=1$; $i<=6$; i++) $\{$
System.out.println("I am so smart");
\}

- Tests the loop counter variable against a limit
- Uses comparison operators:
< less than
<= less than or equal to
$>$ greater than
$>=$ greater than or equal to

Repetition with for loops

- So far, repeating a statement is redundant:

System.out.println("Homer says:"); System.out.println("I am so smart") System.out.println("I am so smart") System.out.println("I am so smart");
System.out.println("I am so smart");
System.out.println("S-M-R-T... I mean $S-M-A-R-T ")$;

- Java's for loop statement performs a task many times.

System.out.println("Homer says:");
for (int $i=1$; $i<=4$; i++) $\{\quad / /$ repeat 4 times System.out.println("I am so smart");
\}
System.out.println("S-M-R-T... I mean $S-M-A-R-T$ ");
Copyright 2010 by Pearson Education
2

Repetition over a range

System.out.println("1 squared $="+1$ * 1);
System.out.println("2 squared $="+2$ * 2);
System.out.println("3 squared $="+3$ * 3)
System. out.println("4 squared $="+4 * 4)$;
System. out.println("5 squared $="+5$ * 5);
System.out.println(" 6 squared $="+6$ * 6) ;

- Intuition: "I want to print a line for each number from 1 to 6"
- The for loop does exactly that!
for (int $i=1$; $i<=6 ; i++$) $\{$
System.out.println(i + " squared = " + (i * i));
\}
- "For each integer i from 1 through 6, print ..."

Copyright 2010 by Pearson Education

int highestTemp $=5$;
for (int $i=-3$; $i<=$ highestTemp / 2; i++) $\{$
System.out.print((i * $1.8+32)+" \quad ") ;$
\}

- Prints without moving to a new line
- allows you to print partial messages on the same line
- Output:
$\begin{array}{llllll}26.6 & 28.4 & 30.2 & 32.0 & 33.8 & 35.6\end{array}$
- Concatenate " " to separate the numbers

Nested loops

- nested loop: A loop placed inside another loop.
for (int $i=1$; $i<=5$; $i++$) (
for (int $\mathrm{j}=1$; $\mathrm{j}<=10$; $\mathrm{j}++$) $\{$
System.out.print("*");
\}
System.out.println(); // to end the line
)
- Output:
$\underset{* * * * * * * * *}{* * * * * * * * * *}$

The outer loop repeats 5 times; the inner one 10 times. - "sets and reps" exercise analogy
\qquad

Nested for loop exercise

- What is the output of the following nested for loops?
for (int $i=1 ; i<=5 ; i++)$ \{
for (int $j=1 ; j<=i ; j++$) \{
System.out.print("*");
Sys
system.out.println();
\}
- Output:
$\underset{\substack{* \\ * * \\ * *}}{*}$
$\underset{\substack{* * * * \\ * * * * *}}{*}$

Cooyright 2010 by Pearson Education

Mapping loops to numbers

for (int count $=1$; count $<=5$; count++) \{ System.out.print(...);
\}

- What statement in the body would cause the loop to print: 47101316
for (int count $=1$; count $<=5$; count++) \{ System.out.print (3 * count +1 + " ");
\}

Coopright 2010 by Pearson Education

Loop tables question

- What statement in the body would cause the loop to print: 1713951
- Let's create the loop table together.
- Each time count goes up 1, the number printed should ...
- But this multiple is off by a margin of ...

count	number to print	-4 * count	$-4 *$ count +21
1	17	-4	17
2	13	-8	13
3	9	-12	9
4	5	-16	5
5	1	-20	1

Copyright 2010 by Pearson Education

Outer and inner loop

- First write the outer loop, from 1 to the number of lines.
for (int line $=1$; line $<=5$; line++)
,
- Now look at the line contents. Each line has a pattern: - some dots (0 dots on the last line), then a number
.... 1
$\ldots 2$
.${ }_{4}$
5
- Observation: the number of dots is related to the line number.
- Copyright 2010 by Peasson Education

20

LOOP tableS - What statement in the body would cause the loop to print: $27^{2} 12 \quad 17$ 22
- To see patterns, make a table of count and the numbers.
- Each time count goes up by 1, the number should go up by 5.
- But count * 5 is too great by 3, so we subtract 3 .
count number to print 5 * count 5 * count -3 1 2 5 2 2 7 10 7 3 12 15 12 4 17 20 17 5 22 25 22

Another view: Slope-intercept

- The next three slides present the mathematical basis for the loop tables. Feel free to skip it.

count (x)	number to print (y)
1	2
2	7
3	12
4	17
5	22

Caution: This is algebra, not assignment!

- Recall: slope-intercept form ($y=m x+b$)
- Slope is defined as "rise over run" (i.e. rise / run). Since the "run" is always 1 (we increment along x by 1), we just need to look at the slope (m) is the difference between y values' in this case it is, the
lope (m) is the diferce be in in
To compute the y-intercept (b), plug in the value of y at $\mathrm{x}=1$ and
solve for b . In this case, $y=m * x+b$
$2=5 * 1+b$ Then $\mathrm{b}=-3$
- So the equation is
$y=m * x+b$
$y=5$ * count - 3

count (x)	number to print (y)
1	2
2	7
3	12
4	17
5	22

Copyright 2010 by Pearson Education

Nested for loop exercise

- Make a table to represent any patterns on each line.

$\ldots .1$				
$\ldots .2$	line	\# of dots	-1 * line	-1 * line +5
$\ldots 3$	1	4	-1	4
.4	2	3	-2	3
3	2	-3	2	
4	1	-4	1	
5	0	-5	0	

- To print a character multiple times, use a for loop.
for (int $j=1 ; ~ j<=4 ; ~ j++$) \{
system.out.print("."); //4 dots
\}

Coopright 2010 by Pearson Edcucation

Nested for loop exercise

- What is the output of the following nested for loops?
for (int line = 1; line <= 5; line++)

$$
\text { for (int } j=1 ; j<=(-1 \text { * line }+5) ; j++) \text { \{ }
$$

System.out.print(".");
\}
r (int $k=1 ; k<=$ line; $k++$) $\{$ System.out.print(line);
\}
System.out.println();
\}

- Answer:
. . .1
. .22
. .22
. .333
. 4444
55555
Copyright 2010 by Pearson Education

Another view: Slope-intercept

- Algebraically, if we always take the value of y at $x=1$, then we can solve for b as follows:
$y=m * x+b$
$y_{1}=m * 1+b$
$y_{1}=m+b$
$\mathrm{b}=\mathrm{y}_{1}-\mathrm{m}$
- In other words, to get the y-intercept, just subtract the slope from the first y value ($b=2-5=-3$) - This gets us the equation
$y=m * x+b$
$y=5 * x-3$
$y=5 *$ count -3
(which is exactly the equation from the previous slides)

Copyright 2010 by Pearson Education

Nested for loop solution

- Answer:
for (int line $=1$; line $<=5$; line++) $\{$
for (int $j=1 ; j<=(-1$ * line +5$)$; $j++$) \{ System.out.print(".");

System.out.println(line);
\}

- Output:
$\ldots .1$
$\ldots .2$
.$^{-3}$
..4
5

Cooyright 2010 by Pearson Education
28

Nested for loop exercise

- Modify the previous code to produce this output:
.... 1
$\ldots 2$.
..3..
. 4 .

Answer:
for (int line $=1$; line $<=5$; line++) $\{$
\quad for (int $j=1 ; j<=(-1$ * line +5$) ; j++)$ \{
System.out.print(".");
System.out.print(line);
for (int $j=1 ; j<=($ line - 1); j++)
System.out.print(".");
System.out.println() ;
\}
Copyright 2010 by Pearson Education
${ }^{30}$

