
1

Building Java Programs

Chapter 5
Lecture 5-1: while Loops,

Fencepost Loops, and Sentinel Loops

reading: 5.1 – 5.2

2

A deceptive problem...
� Write a method printNumbers that prints each number

from 1 to a given maximum, separated by commas.

For example, the call:

printNumbers(5)

should print:

1, 2, 3, 4, 5

3

Flawed solutions
� public static void printNumbers(int max) {

for (int i = 1; i <= max; i++) {

System.out.print(i + ", ");

}

System.out.println(); // to end the line of output

}

� Output from printNumbers(5): 1, 2, 3, 4, 5,

� public static void printNumbers(int max) {

for (int i = 1; i <= max; i++) {

System.out.print(", " + i);

}

System.out.println(); // to end the line of output

}

� Output from printNumbers(5): , 1, 2, 3, 4, 5

4

Fence post analogy
� We print n numbers but need only n - 1 commas.

� Similar to building a fence with wires separated by posts:

� If we use a flawed algorithm that repeatedly places a post +

wire, the last post will have an extra dangling wire.

for (length of fence) {

place a post.

place some wire.

}

5

Fencepost loop
� Add a statement outside the loop to place the initial "post."

� Also called a fencepost loop or a "loop-and-a-half" solution.

place a post.

for (length of fence - 1) {

place some wire.

place a post.

}

6

Fencepost method solution
public static void printNumbers(int max) {

System.out.print(1);

for (int i = 2; i <= max; i++) {

System.out.print(", " + i);

}

System.out.println(); // to end the line

}

� Alternate solution: Either first or last "post" can be taken out:

public static void printNumbers(int max) {

for (int i = 1; i <= max - 1; i++) {

System.out.print(i + ", ");

}

System.out.println(max); // to end the line

}

7

Fencepost question
� Modify your method printNumbers into a new method
printPrimes that prints all prime numbers up to a max.

� Example: printPrimes(50) prints

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47

� If the maximum is less than 2, print no output.

� To help you, write a method countFactors which returns

the number of factors of a given integer.
� countFactors(20) returns 6 due to factors 1, 2, 4, 5, 10, 20.

8

Fencepost answer
// Prints all prime numbers up to the given max.
public static void printPrimes(int max) {

if (max >= 2) {

System.out.print("2");

for (int i = 3; i <= max; i++) {

if (countFactors(i) == 2) {

System.out.print(", " + i);

}

}

System.out.println();

}

}

// Returns how many factors the given number has.
public static int countFactors(int number) {

int count = 0;

for (int i = 1; i <= number; i++) {

if (number % i == 0) {

count++; // i is a factor of number
}

}

return count;

}

9

while loops

reading: 5.1

10

Categories of loops
� definite loop: Executes a known number of times.

� The for loops we have seen are definite loops.

� Print "hello" 10 times.

� Find all the prime numbers up to an integer n.

� Print each odd number between 5 and 127.

� indefinite loop: One where the number of times its body
repeats is not known in advance.

� Prompt the user until they type a non-negative number.

� Print random numbers until a prime number is printed.

� Repeat until the user has typed "q" to quit.

11

The while loop
� while loop: Repeatedly executes its
body as long as a logical test is true.

while (test) {

statement(s);

}

� Example:

int num = 1; // initialization

while (num <= 200) { // test

System.out.print(num + " ");

num = num * 2; // update

}

// output: 1 2 4 8 16 32 64 128

12

Example while loop
// finds the first factor of 91, other than 1

int n = 91;

int factor = 2;

while (n % factor != 0) {

factor++;

}

System.out.println("First factor is " + factor);

// output: First factor is 7

� while is better than for because we don't know how many

times we will need to increment to find the factor.

13

� sentinel: A value that signals the end of user input.

� sentinel loop: Repeats until a sentinel value is seen.

� Example: Write a program that prompts the user for text
until the user types "quit", then output the total number of
characters typed.

� (In this case, "quit" is the sentinel value.)

Type a word (or "quit" to exit): hello
Type a word (or "quit" to exit): yay
Type a word (or "quit" to exit): quit
You typed a total of 8 characters.

Sentinel values

14

Solution?
Scanner console = new Scanner(System.in);

int sum = 0;

String response = "dummy"; // "dummy" value, anything but "quit"

while (!response.equals("quit")) {

System.out.print("Type a word (or \"quit\" to exit): ");

response = console.next();

sum += response.length();

}

System.out.println("You typed a total of " + sum + " characters.");

� This solution produces the wrong output. Why?

You typed a total of 12 characters.

15

The problem with our code
� Our code uses a pattern like this:

sum = 0.

while (input is not the sentinel) {

prompt for input; read input.

add input length to the sum.

}

� On the last pass, the sentinel’s length (4) is added to the
sum:

prompt for input; read input ("quit").

add input length (4) to the sum.

� This is a fencepost problem.

� Must read N lines, but only sum the lengths of the first N-1.

16

A fencepost solution
sum = 0.

prompt for input; read input. // place a "post"

while (input is not the sentinel) {

add input length to the sum. // place a "wire"

prompt for input; read input. // place a "post"

}

� Sentinel loops often utilize a fencepost "loop-and-a-half"
style solution by pulling some code out of the loop.

17

Correct code
Scanner console = new Scanner(System.in);

int sum = 0;

// pull one prompt/read ("post") out of the loop
System.out.print("Type a word (or \"quit\" to exit): ");
String response = console.next();

while (!response.equals("quit")) {

sum += response.length(); // moved to top of loop
System.out.print("Type a word (or \"quit\" to exit): ");

response = console.next();

}

System.out.println("You typed a total of " + sum + " characters.");

18

Sentinel as a constant
public static final String SENTINEL = "quit";
...

Scanner console = new Scanner(System.in);

int sum = 0;

// pull one prompt/read ("post") out of the loop
System.out.print("Type a word (or \"" + SENTINEL + "\" to exit): ");
String response = console.next();

while (!response.equals(SENTINEL)) {
sum += response.length(); // moved to top of loop
System.out.print("Type a word (or \"" + SENTINEL + "\" to exit): ");
response = console.next();

}

System.out.println("You typed a total of " + sum + " characters.");

