Logical assertions

» assertion: A statement that is either true or false.

Examples:

BUIldIng Java PrOgramS « Java was created in 1995.
« The sky is purple.
Chapter 5 = 23 is a prime number.
Lecture 5-4: Assertions, do/while loops s LOsorcateritian 20,
« x divided by 2 equals 7. (depends on the value of x)

reading: 5.4 - 5.5

* An assertion might be false ("The sky is purple" above), but
it is still an assertion because it is a true/false statement.

] 1 =] 2
Copyright 2010 by Pearson Education 7 Copyright 2010 by Pearson Education

Reasoning about assertions ’ Assertions in code

» Suppose you have the following code: * We can make assertions about our code and ask whether they
are true at various points in the code.

HERE (x> « Valid answers are ALWAYS, NEVER, or SOMETIMES.
// Point A : ‘
X7 System.out.print ("Type a nonnegative number: ");
} else '{ double number = console.nextDouble();
// Point B // Point A: is number < 0.0 here? (SOMETIMES)
. hile (number < 0.0) {
i while number .
} . // Point B: is number < 0.0 here? (ALWAYS)
// Point D System.out.print ("Negative; try again: ");

= number = console.nextDouble();
¢ What do you know about x's value at the three points?

// Point C: is number < 0.0 here? (SOMETIMES)
« Is x > 3? Always? Sometimes? Never? }
// Point D: is number < 0.0 here? (NEVER)
-] = 3 =] 4
"% Copyright 2010 by Pearson Education U Copyright 2010 by Pearson Education
Reasoning about assertions Assertions and loops
« Right after a variable is initialized, its value is known: * At the start of a loop's body, the loop's test must be true:
sie 3 gl while (y < 10) {

// is x > 0? ALWAYS // is y < 10? ALWAYS

¢ In general you know nothing about parameters' values: !

public static void mystery(int a, int b) {

* After a loop, the loop's test must be false:
// is a == 10? SOMETIMES

while (y < 10) {

* But inside an if, while, etc., you may know something: -
public static void mystery(int a, int b) { // is y < 10? NEVER
i (Eet O)E q . , o
// is a == 107 NEVER . Ins;lgflz I(o;p<sll:é?dy(/, the loop's test may become false:

} - y++i
} // is y < 10? SOMETIMES
}

= 5 =2
7 Copyright 2010 by Pearson Education 7 Copyright 2010 by Pearson Education

bye

"Sometimes"

* Things that cause a variable's value to be unknown
(often leads to "sometimes" answers):

« reading from a Scanner
« reading a number from a Random object
« a parameter's initial value to a method

« If you can reach a part of the program both with the
answer being "yes" and the answer being "no", then the
correct answer is "sometimes".

« If you're unsure, "Sometimes" is a good guess.

% Copyright 2010 by Pearson Education

Assertion example 2

public static int mystery(Scanner console) {
int prev = 0;
int count = 0;

int next = console.nextInt();
// Point A o o i
& Which of the following assertions are
while (next != 0) { 2 = = 5
// Point B true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.
if (next == prev) {
// Point C
count++; next == 0 [prev 0 | next == prev
Point A | SOMETIMES [ALWAYS SOMETIMES

prev = next;
next = console.nextInt();

Point B | NEVER SOMETIMES | SOMETIMES

// Point D Point C | NEVER NEVER ALWAYS
} Point D | SOMETIMES | NEVER SOMETIMES
// Point E

Point E | ALwaYs SOMETIMES | SOMETIMES

return count;

™ Copyright 2010 by Pearson Education

public static void mystery(int x, int y) {
int 2 = 0;
// Point A
while (x >= y) = . i
// Point B Which of the following assertions are
X =3x-y; true at which point(s) in the code?
zt++; Choose ALWAYS, NEVER, or SOMETIMES.
if (x 1= y) (
// Point C x <y x ==y z == 0
zio 2t O Point A | SOMETIMES | SOMETIMES | ALWAYS
}
Point B | NEVER SOMETIMES | SOMETIMES
// Point D Point C | SOMETIMES | NEVER NEVER
} Point D | SOMETIMES [SOMETIMES | NEVER
// Point E Point E | ALWAYS NEVER SOMETIMES
System.out.println(z);
}
- 8
Copyright 2010 by Pearson Education

Assertion example 3

// BAssumes y >= 0, and returns x"y
public static int pow(int x, int y) {
int prod = 1;

// Point A Which of the following assertions are
while (y > 0) { true at which point(s) in the code?
o Choose ALWAYS, NEVER, or SOMETIMES.
2y v>0 Jyre -0
Vi=oy /=2 Point A | SOMETIMES | SOMETIMES
// Point D
} else { Point B | ALWAYS SOMETIMES
// Point E
prod = prod * x; Point C | ALWAYS ALWAYS
%—ivom: F Point D | ALWAYS SOMETIMES
} ! Point E | ALWAYS NEVER
// Point G
return prod; Point F | SOMETIMES | ALWAYS
: Point G | NEVER ALWAYS

T Copyright 2010 by Pearson Education

while loop variations

reading: 5.4

" Copyright 2010 by Pearson Education

The do/while loop

* do/while loop: Performs its test at the end of each repetition.
« Guarantees that the loop's {} body will run at least once.

do o
statement(s);
} while (test);

// Example: prompt until correct password is typed
String phrase;
do {
System.out.print ("Type your password: ");
phrase = console.next();
} while (!'phrase.equals("abracadabra")) ;

2% Copyright 2010 by Pearson Education

bye

do/while answer
// Rolls two dice until a sum of 7 is reached
import java.util.*;
public class Dice {
public static void main(String[] args) {
Random rand = new Random();
int tries = 0;
int sum;
do {
int rolll = rand.nextInt(6) + 1; // one roll
int roll2 = rand.nextInt(6) + 1;
sum = rolll + roll2;
System.out.println(rolll + " + " + roll2 + " = " + sum);
tries++;
} while (sum != 7);
System.out.println("You won after " + tries + " tries!");
}
}
14
Copyright 2010 by Pearson Education

do/while question
¢ Modify the previous Dice program to use do/while.
2ol
3+5=38
5 G o
i sie9
4+ 3 =7
You won after 5 tries!

e Is do/while a good fit for our past sentinel program?
= I 13
S Copyright 2010 by Pearson Education

break
* break statement: Immediately exits a loop.
= Can be used to write a loop whose test is in the middle.
« The loop's test is often changed to true ("always repeat").
while (true) ({
statement(s);
if (test) {
break;
}
statement(s);
}
* break is considered to be bad style by some programmers.
15

9 Copyright 2010 by Pearson Education

Sentinel loop with break

Scanner console = new Scanner (System.in);
int sum = 0;
while (true) {

System.out.print ("Enter a number (-1 to quit): ");
int number = console.nextInt();
if (number == -1) { // don't add -1 to sum

break;

}

sum = sum + number; // number != -1 here

)

System.out.println("The total was " + sum);

5 Copyright 2010 by Pearson Education

