Building Java Programs

Chapter 6
Lecture 6-2: Line-Based File Input

reading: 6.3 - 6.5

Hours question

* Given a file hours.txt with the following contents:

1238 Bent 1920508 8IS i 6r 82
4561 Greqgi 40 586165 5 20w =10
#.898Vilctoria 85058 0= 808 8108 755

« Consider the task of computing hours worked by each person:

Ben (ID#123) worked 31.4 hours (7.85 hours/day)
Greg (ID#456) worked 36.8 hours (7.36 hours/day)
Victoria (ID#789) worked 39.5 hours (7.90 hours/day)

BEHIND EVERY
Gooo mcﬂi |
IS A GREAT

TEACHER'S ASSISTANT

Hours answer (flawed)

// This solution does not work!
import java.io.*; // for File
import java.util.*; // for Scanner
public class HoursWorked {
public static void main(String[] args)
throws FileNotFoundException {
Scanner input = new Scanner (new File("hours.txt"));
while (input.hasNext()) {
// process one person
int id = input.nextInt();
String name = input.next();
double totalHours = 0.0;
int days = 0;
while (input.hasNextDouble()) {
totalHours += input.nextDouble();
days++;

System.out.println(name + " (ID#" + id +
") worked " + totalHours + " hours (" +
(totalHours / days) + " hours/day)");

Flawed output

Ben (ID#123) worked 487.4 hours (97.48 hours/day)
Exception in thread "main"
java.util.InputMismatchException
at java.util.Scanner.throwFor (Scanner.java:840)
at java.util.Scanner.next (Scanner.java:1461)
at java.util.Scanner.nextInt (Scanner.java:2091)
at HoursWorked.main (HoursBad.java:9)

« The inner while loop is grabbing the next person's ID.

« We want to process the tokens, but we also care about the line
breaks (they mark the end of a person's data).

* A better solution is a hybrid approach:
« First, break the overall input into lines.
« Then break each line into tokens.

Line-based Scanner methods

Method Description
nextLine () returns next entire line of input (from cursor to \n)

hasNextLine () |returns true if there are any more lines of input
to read (always true for console input)

Scanner input = new Scanner (new File ("<filename>"));
while (input.hasNextLine()) {

String line = input.nextLine();

<process this line>;

Consuming lines of input

2.3 3.14 John Smith "Hello" world
45.2 19

e The Scanner reads the lines as follows:
23\t3.14 John Smith\t"Hello" world\n\t\t45.2 19\n
o

® String line = input.nextLine():
23\t3.14 John Smith\t"Hello" world\n\t\t45.2 19\n
~

® String line2 = input.nextLine();
23\t3.14 John Smith\t"Hello" world\n\t\t45.2 19\n

~

« Each \n character is consumed but not returned.

Scanners on Strings

¢ A scanner can tokenize the contents of a String:
Scanner <name> = new Scanner (<String>) ;

« Example:

Stringstexi== = Wliee 3P helll'o; S L5 p
Scanner scan = new Scanner (text);

int num = scan.nextInt();

System.out.println (num); /15
double num2 = scan.nextDouble();
System.out.println(num2) ; e/ 352
String word = scan.next();
System.out.println (word) ; // "hello"
7
—|

Hours question

* Fix the Hours program to read the input file properly:

19238 Ben s 1255581 = 162310
456=Greg=4. 0= 171" 6= 6.-5-2-" == 12
789 - Victoria 8.0-8.0-8.0:8.0- 7.5

« Recall, it should produce the following output:

Ben (ID#123) worked 31.4 hours (7.85 hours/day)
Greg (ID#456) worked 36.8 hours (7.36 hours/day)

Victoria (ID#789) worked 39.5 hours (7.90 hours/day)

Mixing lines and tokens

Output to console:

Line has 6 words

Input file input.txt:
The quick brown fox jumps over
the lazy dog.

Line has 3 words

// Counts the words on each line of a file
Scanner input = new Scanner (new File ("input.txt"));:
while (input.hasNextLine()) {
String line = input.nextLine();
- = new (line) ;

// process the contents of this line
int count = 0;
while (lineScan.hasNext()) {
String word = lineScan.next();
count++;

System:sout-printini@Line=has= t-count "“words¥):

Hours answer, corrected

// Processes an employee input file and outputs each employee's hours.
import java.io / for File
import java.util 7/ for Scanner

public class Hours {
public static void main(String[] args) throws FileNotFoundException {
Scanner input = new Scanner (new File("hours.txt"));
while (input.hasNextLine()) {
string line = input.nextLine();
processEmployee (1ine) ;

}

public static void processEmployee(String line) {

Scanner lineScan = new Scanner (line);

int id = lineScan.nextInt(); // e.g. 456

String name = lineScan.next (); /1 e.g. "Greg"

double sum = 0.0;

int count

while (lineScan.hasNextDouble()) {
sum - sum + lineScan.nextDouble () ;
count++;

}

double average = sum / count;
System.out.println(name + " (ID§" + id + ") worke
sum + " hours (" + average + " hours/day)");

File output

reading: 6.4 - 6.5

Output to files

¢ PrintStream: An object in the java.io package that lets
you print output to a destination such as a file.

« Any methods you have used on system.out
(such as print, println) will work on @ PrintStream.

¢ Syntax:
PrintStream <Mame> = new PrintStream(new File("<filename>"));

Example:

PrintStream output = new PrintStream(new File ("out.txt"));
OUEPpUESp Bt ni(EH ealiore CillicHi)g -

output.println("This is a second line of output.”);

Details about PrintStream

PrintStream <name> = new PrintStream(new File ("<filename>")) ;

« If the given file does not exist, it is created.
« If the given file already exists, it is overwritten.

« The output you print appears in a file, not on the console.
You will have to open the file with an editor to see it.

« Do not open the same file for both reading (Scanner)
and writing (PrintStream) at the same time.
« You will overwrite your input file with an empty file (0 bytes).

System.out and PrintStream

* The console output object, System.out, iS @ PrintStream.

PrintStream outl = System.out;

PrintStream out2 = new PrintStream(new File("data.txt"));
outl.println("Hello, console!"); // goes to console
out2.println("Hello, file!"); // goes to file

« A reference to it can be stored in a PrintStream variable.
« Printing to that variable causes console output to appear.

* You can pass System.out to a method as a PrintStream.
« Allows a method to send output to the console or a file.

PrintStream question

* Modify our previous Hours program to use a PrintStream
to send its output to the file hours_out.txt.

« The program will produce no console output.
 But the file hours_out.txt will be created with the text:

Ben (ID#123) worked 31.4 hours (7.85 hours/day)
Greg (ID#456) worked 36.8 hours (7.36 hours/day)
Victoria (ID#789) worked 39.5 hours (7.9 hours/day)

PrintStream answer

// Processes an employee input file and outputs each employee's hours.
import a / for File
impor 7/ for Scanner

va.io
ava.util

public class Hours2 {
public static void main(String[] args) throws FileNotFoundException {
Scanner input = new Scanner (new File("hours.txt"));
i w PrintSt: (new File("hours_out.txt"));
while (input.hasNextLine()) {
5 line = input.nextLine();
ine);

Employee (ou!

public static void processEmployee (PrintStream out, String line) (
Scanner lineScan = new Scanner (line);
int id = lineScan.nextInt(); // e.g. 456
String name = lineScan.next (); /1 e.g. "Greg"
0;

.hasNextDouble()) {
sum = sum + lineScan.nextDouble();
count++;

}

double average =
out.println(name + "
sum +

id + ") worked " +
" + average + " hours/day)"):

Prompting for a file name

* We can ask the user to tell us the file to read.
» The filename might have spaces; use nextLine (), not next ()

// prompt for input file name

Scanner console = new Scanner (System.in);
System.out.print("Type a file name to use: ");
String filename = console.nextLine();

Scanner input = new Scanner (new File(filename));

¢ Files have an exists method to test for file-not-found:
File file = new File("hours.txt");

if (!'file.exists())
// try a second input file as a backup
System.out.print ("hours file not found!");
file = new File ("hours2.txt");

