
Copyright 2010 by Pearson Education

Building Java Programs

Chapter 8

Lecture 8-3: Encapsulation;
this; comparing objects

reading: 8.3 - 8.4; 9.2

Copyright 2010 by Pearson Education
2

Encapsulation

� encapsulation: Hiding implementation details from clients.

� Encapsulation forces abstraction.

� separates external view (behavior) from internal view (state)

� protects the integrity of an object's data

Copyright 2010 by Pearson Education
3

Private fields
A field that cannot be accessed from outside the class

private type name;

� Examples:

private int id;

private String name;

� Client code won't compile if it accesses private fields:

PointMain.java:11: x has private access in Point

System.out.println(p1.x);

^

Copyright 2010 by Pearson Education
4

Accessing private state
// A "read-only" access to the x field ("accessor")

public int getX() {

return x;

}

// Allows clients to change the x field ("mutator")

public void setX(int newX) {

x = newX;

}

� Client code will look more like this:

System.out.println(p1.getX());

p1.setX(14);

Copyright 2010 by Pearson Education
5

Point class, version 4
// A Point object represents an (x, y) location.
public class Point {

private int x;
private int y;

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public int getX() {
return x;

}

public int getY() {
return y;

}

public double distanceFromOrigin() {
return Math.sqrt(x * x + y * y);

}

public void setLocation(int newX, int newY) {
x = newX;
y = newY;

}

public void translate(int dx, int dy) {
setLocation(x + dx, y + dy);

}
}

Copyright 2010 by Pearson Education
6

Benefits of encapsulation

� Abstraction between object and clients

� Protects object from unwanted access

� Example: Can't fraudulently increase an Account's balance.

� Can change the class implementation later

� Example: Point could be rewritten in polar

coordinates (r, θ) with the same methods.

� Can constrain objects' state (invariants)

� Example: Only allow Accounts with non-negative balance.

� Example: Only allow Dates with a month from 1-12.

7
Copyright 2010 by Pearson Education

The keyword this

reading: 8.3

Copyright 2010 by Pearson Education
8

The this keyword

� this : Refers to the implicit parameter inside your class.

(a variable that stores the object on which a method is called)

� Refer to a field: this.field

� Call a method: this.method(parameters);

� One constructor this(parameters);

can call another:

Copyright 2010 by Pearson Education
9

Variable shadowing
� shadowing: 2 variables with same name in same scope.

� Normally illegal, except when one variable is a field.

public class Point {

private int x;

private int y;

...

// this is legal

public void setLocation(int x, int y) {

...

}

� In most of the class, x and y refer to the fields.

� In setLocation, x and y refer to the method's parameters.

Copyright 2010 by Pearson Education
10

Fixing shadowing
public class Point {

private int x;

private int y;

...

public void setLocation(int x, int y) {

this.x = x;

this.y = y;

}

}

� Inside setLocation,

� To refer to the data field x, say this.x

� To refer to the parameter x, say x

Copyright 2010 by Pearson Education
11

Calling another constructor
public class Point {

private int x;

private int y;

public Point() {

this(0, 0); // calls (x, y) constructor
}

public Point(int x, int y) {
this.x = x;
this.y = y;

}

...

}

� Avoids redundancy between constructors

� Only a constructor (not a method) can call another constructor

12
Copyright 2010 by Pearson Education

The equals method

reading: 9.2

Copyright 2010 by Pearson Education
13

Class Object

� Java has a class named Object.

� Every class is implicitly an Object

� The Object class defines several methods

that become part of every class you write:

� public String toString()

Returns a text representation of the object,
usually so that it can be printed.

� public boolean equals(Object other)

Compare the object to any other for equality.
Returns true if the objects have equal state.

Copyright 2010 by Pearson Education
14

Recall: comparing objects
� The == operator does not work well with objects.

== compares references to objects, not their state.

It only produces true when you compare an object to itself.

Point p1 = new Point(5, 3);

Point p2 = new Point(5, 3);

Point p3 = p2;

// p1 == p2 is false;

// p1 == p3 is false;

// p2 == p3 is true

...

x 5 y 3
p1

p2

...

x 5 y 3

p3

Copyright 2010 by Pearson Education
15

The equals method

� The equals method compares the state of objects.

if (str1.equals(str2)) {

System.out.println("the strings are equal");

}

� But if you write a class, its equals method behaves like ==

if (p1.equals(p2)) { // false :-(

System.out.println("equal");

}

� This is the default behavior we receive from class Object.

� Java doesn't understand how to compare Points by default.

Copyright 2010 by Pearson Education
16

Flawed equals method

� We can change this behavior by writing an equals method.

� Ours will override the default behavior from class Object.

� The method should compare the state of the two objects and

return true if they have the same x/y position.

� A flawed implementation:

public boolean equals(Point other) {

if (x == other.x && y == other.y) {

return true;

} else {

return false;

}

}

Copyright 2010 by Pearson Education
17

Flaws in our method
� The body can be shortened to the following:

// boolean zen

return x == other.x && y == other.y;

� It should be legal to compare a Point to any object
(not just other Points):

// this should be allowed

Point p = new Point(7, 2);

if (p.equals("hello")) { // false

...

� equals should always return false if a non-Point is passed.

Copyright 2010 by Pearson Education
18

equals and Object
public boolean equals(Object name) {

statement(s) that return a boolean value ;

}

� The parameter to equals must be of type Object.

� Object is a general type that can match any object.

� Having an Object parameter means any object can be passed.

� If we don't know what type it is, how can we compare it?

Copyright 2010 by Pearson Education
19

Another flawed version
� Another flawed equals implementation:

public boolean equals(Object o) {

return x == o.x && y == o.y;

}

� It does not compile:

Point.java:36: cannot find symbol

symbol : variable x

location: class java.lang.Object

return x == o.x && y == o.y;

^

� The compiler is saying,

"o could be any object. Not every object has an x field."

Copyright 2010 by Pearson Education
20

Type-casting objects
� Solution: Type-cast the object parameter to a Point.

public boolean equals(Object o) {

Point other = (Point) o;

return x == other.x && y == other.y;

}

� Casting objects is different than casting primitives.

� Really casting an Object reference into a Point reference.

� Doesn't actually change the object that was passed.

� Tells the compiler to assume that o refers to a Point object.

Copyright 2010 by Pearson Education
21

Casting objects diagram
� Client code:

Point p1 = new Point(5, 3);

Point p2 = new Point(5, 3);

if (p1.equals(p2)) {

System.out.println("equal");

}

public boolean equals(Object o) {

Point other = (Point) o;

return x == other.x && y == other.y;

}

3y5x

p1

p2

...

3y5x

o

other

Copyright 2010 by Pearson Education
22

Comparing different types
Point p = new Point(7, 2);

if (p.equals("hello")) { // should be false

...

}

� Currently our method crashes on the above code:

Exception in thread "main"

java.lang.ClassCastException: java.lang.String

at Point.equals(Point.java:25)

at PointMain.main(PointMain.java:25)

� The culprit is the line with the type-cast:

public boolean equals(Object o) {

Point other = (Point) o;

Copyright 2010 by Pearson Education
23

The instanceof keyword
if (variable instanceof type) {

statement(s);

}

� Asks if a variable refers
to an object of a given type.

� Used as a boolean test.

String s = "hello";

Point p = new Point();

falsenull instanceof Object

falsep instanceof String

truep instanceof Object

falsenull instanceof String

trues instanceof Object

truep instanceof Point

trues instanceof String

falses instanceof Point

resultexpression

Copyright 2010 by Pearson Education
24

Final equals method

// Returns whether o refers to a Point object with

// the same (x, y) coordinates as this Point.

public boolean equals(Object o) {

if (o instanceof Point) {

// o is a Point; cast and compare it

Point other = (Point) o;

return x == other.x && y == other.y;

} else {

// o is not a Point; cannot be equal

return false;

}

}

