Building Java Programs

Chapter 8

Lecture 8-3: Encapsulation;
this; comparing objects

reading: 8.3 - 8.4; 9.2
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Encapsulation

* encapsulation: Hiding implementation details from clients.

» Encapsulation forces abstraction.

« separates external view (behavior) from internal view (state)
« protects the integrity of an object's data
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Private fields

A field that cannot be accessed from outside the class

private type name;

 Examples:

private int 1d;
private String name;

* Client code won't compile if it accesses private fields:

PointMain. java:11l: x has private access in Point
System.out .println (pl.x);

A

Copyright 2010 by Pearson Education




P (o e et 3 ¢

Accessing private state

// A "read-only" access to the x field ("accessor")

public int getX() {
YR Y SR B

}

// Allows clients to change the x field ("mutator")

public void setX(int newX) {
X = newX;

e Client code will look more like this:

System.out.println(pl.getX());
pl.setX(14);
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Point class, version 4

// A Point object represents an (x, y) location.
pubitaigieltagsrRPoint

private int x;

private int y;
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}

public int getX() {
return x;
}

public int getY () ({
return y;
}

publsrerdoubiEandirs T an ceR oML g Gng
return Math.sgrt(x * x + y * y);
}

e R e e e A R e M S O R A S A O A T AT e AR e e
2 newx;
y newy;

}
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Benefits of encapsulation

* Abstraction between object and clients

e

* Protects object from unwanted access
« Example: Can't fraudulently increase an Account's balance.

e Can change the class implementation later
» Example: point could be rewritten in polar
coordinates (r, 8) with the same methods. o

e Can constrain objects' state (invariants)
» Example: Only allow Accounts with non-negative balance.
» Example: Only allow Dates with a month from 1-12,

Copyright 2010 by Pearson Education




The keyword this

reading: 8.3
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The this keyword

* this : Refers to the implicit parameter inside your class.
(a variable that stores the object on which a method is called)

R /‘/’rf::::_

» Refer to a field: this.field
e Call a method: this.method (parameters) ;
e One constructor this (parameters) ;

can call another:
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Variable shadowing

» shadowing: 2 variables with same name in same scope.
 Normally illegal, except when one variable is a field.

g

publiaerelass Point
private int x;
private int y;

// this is legal
prbise S o s e oo ORI e R e

» In most of the class, x and y refer to the fields.
* In setLocation, x and y refer to the method's parameters.
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Fixing shadowing
pPliae e s Pie e

pELEvVate Nt s
private int y;

pubilicrvord tset hocation ks X snt oy
this.x = x;
this.y = y;

e Inside setLocation,
» To refer to the data field x, say this.x
e To refer to the parameter x, say x
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Calling another constructor

publrcrelass Poanit
S Ve e R e
private int y;

D dEere Do iz asEEa
this (0, 0); // calls (x, y) constructor

) \A\A
jib S e e ERsNe iotan sate . geicitian N ' 8 aa
this.x = x;

this.y Y

}

« Avoids redundancy between constructors
« Only a constructor (not a method) can call another constructor

cfsah
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The equals method

reading: 9.2
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Class Object

* Java has a class named Object.
o Every class is implicitly an object

* The Oobject class defines several methods
that become part of every class you write:

¢ Db lEre S TR TR oS ErTRng)

Returns a text representation of the object,
usually so that it can be printed.

e public boolean equals (Object other)

Compare the object to any other for equality.
Returns true if the objects have equal state.
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Object

equals
finalize
getClass
hashCode
nofify
notifyAll
toString

wait
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Point

Xy

distance
getx

gety
setlLocation
toString
translate
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Recall: comparing objec

* The == operator does not work well with objects.
== compares references to objects, not their state.
It only produces true when you compare an object to itself.

Poilnt pl = new Point (5, 3);
Blogntatp 2w e D e S

Plosi st ne=anre

pl

// pl == p2 is false;

// pl == p3 is false;
// P2 == p3 is true p2 S s Sihe
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The equals method

- /(_J/r_;=:

* The equals method compares the state of objects.

1f (strl.equals(str2)) {
SRYASH et DRI o A tia R el o W L B A s B A RIA O ISR S S e R A U

e But if you write a class, its equals method behaves like ==

if (pl.equals(p2)) // false :—(
AR SO NE S SR e B O B G A R

» This is the default behavior we receive from class Object.
» Java doesn't understand how to compare points by default.
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Flawed equals method

g 7/____,/—4—;

* We can change this behavior by writing an equals method.
» Ours will override the default behavior from class object.

» The method should compare the state of the two objects and
return true if they have the same x/y position.

* A flawed implementation:

public boolean equals (Point other) {

1f (x == other.x && y == other.y) {
return true;
} else {

return false;

}
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Flaws in our method

* The body can be shortened to the following:

-

// boolean zen
return x == other.x && y == other.y;

e It should be legal to compare a point to any object
(not just other Points):

// this should be allowed
Point ‘pimrnewPornb i, i29:;
if (p.equals("hello")) { // false

» equals should always return false if @ non-Point is passed.

L
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equals and Object
public boolean equals (Object name) ({
statement(s) that return a boolean value ;

= /“Jf’f#: 5

» The parameter to equals must be of type Object.
* Object is a general type that can match any object.

» Having an Object parameter means any object can be passed.
- If we don't know what type it is, how can we compare it?
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nother flawed version

e Another flawed equals implementation:

public boolean equals(Object o) {
ReEEe RS st e O

J

* It does not compile:

Polnbigaiasse s cannob Eind s symioor:

symbol : wvarilable x
location: class java.lang.Object
R S s == O S G e e

A\

» The compiler is saying,
"o could be any object. Not every object has an x field."
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Type-casting objects

e Solution: Type-cast the object parameter to a Point.

public boolean equals (Object o) {
Point other = (Point) o;
return X == other.x && y == other.y;

» Casting objects is different than casting primitives.
» Really casting an object reference into a Point reference.

» Doesn't actually change the object that was passed.
» Tells the compiler to assume that o refers to a Point object.

20
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Casting objects diagram

* Client code:
Pornt sele=rmawsRornieos i 390
R Oy e A e R e o e
if (pl.equals(p2)) {
System.out.println("equal");

}
s e 3 =
other
public boolean equals (Object o) {
2 G AR to) Bl e A s R A T
return x == other.x && y == other.y;
pl >
}
pz iz heb v 3
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omparing diffee types

PoinE D n e e Do
if (p.equals("hello")) { // should be false

» Currently our method crashes on the above code:

Exception 1n thread "main"

e ra gt Pas S G e e iU E O R e S S R S TR
ab i Rornt e guallEsi RO S faiEainz o)
B S I M r e I R Ll o I S O B S P RO B S AR

» The culprit is the line with the type-cast:

public boolean equals (Object o) {
| TR Ok B O R Y S e 2 o W A B R S
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"~ The instanceof keyword

if (variable instanceof type) {

statement(s);

e Asks if a variable refers
to an object of a given type.
e Used as a boolean test.

String s = "hello";
Pornt-spr esnewsRPotnt (5
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expression result
s 1nstanceof Point false
SRS e C O SH I FECY true
p instanceof Point true
p instanceof String false
p instanceof Object true
s 1instanceof Object true
null instanceof String | false
null instanceof Object | false
23




AR \

Final equals mehod

e

// Returns whether o refers to a Point object with

// the same (x, y) coordinates as this Point.
public boolean equals (Object o) {

i1f (o instanceof Point) {
// o is a Point; cast and compare it

I b e n e e G ST e 5 o R
return X == other.x && y == other.y;
} else {

// o is not a Point; cannot be equal
return false;
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