Building Java Programs

Chapter 8

Lecture 8-3: Encapsulation;
this; comparing objects

reading: 8.3 - 8.4; 9.2

Copyright 2010 by Pearson Education




Encapsulation

* encapsulation: Hiding implementation details from clients.

» Encapsulation forces abstraction.

« separates external view (behavior) from internal view (state)
« protects the integrity of an object's data

EREEN

qu N334
40310

-]
1 AMP
/ ADO OUTRUT i
— Lhaq Measure=jm

Resistor Voltage .s&
Here Here

2
Copyright 2010 by Pearson Education




Private fields

A field that cannot be accessed from outside the class

private type name;

 Examples:

private int 1d;
private String name;

* Client code won't compile if it accesses private fields:

PointMain. java:11l: x has private access in Point
System.out .println (pl.x);

A

Copyright 2010 by Pearson Education




P (o e et 3 ¢

Accessing private state

// A "read-only" access to the x field ("accessor")

public int getX() {
YR Y SR B

}

// Allows clients to change the x field ("mutator")

public void setX(int newX) {
X = newX;

e Client code will look more like this:

System.out.println(pl.getX());
pl.setX(14);

Copyright 2010 by Pearson Education




Point class, version 4

// A Point object represents an (x, y) location.
pubitaigieltagsrRPoint

private int x;

private int y;

O OAeA TR hs] 2 AT B g St £ B L e S e s A AN v M e e B S v
¢ Sl e AR R
y ) e ot T

}

public int getX() {
return x;
}

public int getY () ({
return y;
}

publsrerdoubiEandirs T an ceR oML g Gng
return Math.sgrt(x * x + y * y);
}

e R e e e A R e M S O R A S A O A T AT e AR e e
2 newx;
y newy;

}

IO e O e VA A o BT = H R Rl o ] o N el 3 o A Y A H B © AL P
Y R e e e L O O D e A B D Sy o D R BT
}

Copyright 2010 by Pearson Education




Benefits of encapsulation

* Abstraction between object and clients

e

* Protects object from unwanted access
« Example: Can't fraudulently increase an Account's balance.

e Can change the class implementation later
» Example: point could be rewritten in polar
coordinates (r, 8) with the same methods. o

e Can constrain objects' state (invariants)
» Example: Only allow Accounts with non-negative balance.
» Example: Only allow Dates with a month from 1-12,

Copyright 2010 by Pearson Education




The keyword this

reading: 8.3

Copyright 2010 by Pearson Education




The this keyword

* this : Refers to the implicit parameter inside your class.
(a variable that stores the object on which a method is called)

R /‘/’rf::::_

» Refer to a field: this.field
e Call a method: this.method (parameters) ;
e One constructor this (parameters) ;

can call another:

Copyright 2010 by Pearson Education




Variable shadowing

» shadowing: 2 variables with same name in same scope.
 Normally illegal, except when one variable is a field.

g

publiaerelass Point
private int x;
private int y;

// this is legal
prbise S o s e oo ORI e R e

» In most of the class, x and y refer to the fields.
* In setLocation, x and y refer to the method's parameters.

Copyright 2010 by Pearson Education




Fixing shadowing
pPliae e s Pie e

pELEvVate Nt s
private int y;

pubilicrvord tset hocation ks X snt oy
this.x = x;
this.y = y;

e Inside setLocation,
» To refer to the data field x, say this.x
e To refer to the parameter x, say x

10

Copyright 2010 by Pearson Education




e I
Calling another constructor

publrcrelass Poanit
S Ve e R e
private int y;

D dEere Do iz asEEa
this (0, 0); // calls (x, y) constructor

) \A\A
jib S e e ERsNe iotan sate . geicitian N ' 8 aa
this.x = x;

this.y Y

}

« Avoids redundancy between constructors
« Only a constructor (not a method) can call another constructor

cfsah
Copyright 2010 by Pearson Education




The equals method

reading: 9.2

il

Copyright 2010 by Pearson Education




Class Object

* Java has a class named Object.
o Every class is implicitly an object

* The Oobject class defines several methods
that become part of every class you write:

¢ Db lEre S TR TR oS ErTRng)

Returns a text representation of the object,
usually so that it can be printed.

e public boolean equals (Object other)

Compare the object to any other for equality.
Returns true if the objects have equal state.

Copyright 2010 by Pearson Education

Object

equals
finalize
getClass
hashCode
nofify
notifyAll
toString

wait

i

Point

Xy

distance
getx

gety
setlLocation
toString
translate

13




— ,/

A ‘—~.---“--—____fM,MWWNWWMWM-
ts

Recall: comparing objec

* The == operator does not work well with objects.
== compares references to objects, not their state.
It only produces true when you compare an object to itself.

Poilnt pl = new Point (5, 3);
Blogntatp 2w e D e S

Plosi st ne=anre

pl

// pl == p2 is false;

// pl == p3 is false;
// P2 == p3 is true p2 S s Sihe

14
Copyright 2010 by Pearson Education




The equals method

- /(_J/r_;=:

* The equals method compares the state of objects.

1f (strl.equals(str2)) {
SRYASH et DRI o A tia R el o W L B A s B A RIA O ISR S S e R A U

e But if you write a class, its equals method behaves like ==

if (pl.equals(p2)) // false :—(
AR SO NE S SR e B O B G A R

» This is the default behavior we receive from class Object.
» Java doesn't understand how to compare points by default.

15

Copyright 2010 by Pearson Education




Flawed equals method

g 7/____,/—4—;

* We can change this behavior by writing an equals method.
» Ours will override the default behavior from class object.

» The method should compare the state of the two objects and
return true if they have the same x/y position.

* A flawed implementation:

public boolean equals (Point other) {

1f (x == other.x && y == other.y) {
return true;
} else {

return false;

}

16

Copyright 2010 by Pearson Education




Flaws in our method

* The body can be shortened to the following:

-

// boolean zen
return x == other.x && y == other.y;

e It should be legal to compare a point to any object
(not just other Points):

// this should be allowed
Point ‘pimrnewPornb i, i29:;
if (p.equals("hello")) { // false

» equals should always return false if @ non-Point is passed.

L

Copyright 2010 by Pearson Education




equals and Object
public boolean equals (Object name) ({
statement(s) that return a boolean value ;

= /“Jf’f#: 5

» The parameter to equals must be of type Object.
* Object is a general type that can match any object.

» Having an Object parameter means any object can be passed.
- If we don't know what type it is, how can we compare it?

18
Copyright 2010 by Pearson Education




nother flawed version

e Another flawed equals implementation:

public boolean equals(Object o) {
ReEEe RS st e O

J

* It does not compile:

Polnbigaiasse s cannob Eind s symioor:

symbol : wvarilable x
location: class java.lang.Object
R S s == O S G e e

A\

» The compiler is saying,
"o could be any object. Not every object has an x field."

19
Copyright 2010 by Pearson Education




Type-casting objects

e Solution: Type-cast the object parameter to a Point.

public boolean equals (Object o) {
Point other = (Point) o;
return X == other.x && y == other.y;

» Casting objects is different than casting primitives.
» Really casting an object reference into a Point reference.

» Doesn't actually change the object that was passed.
» Tells the compiler to assume that o refers to a Point object.

20

Copyright 2010 by Pearson Education




Casting objects diagram

* Client code:
Pornt sele=rmawsRornieos i 390
R Oy e A e R e o e
if (pl.equals(p2)) {
System.out.println("equal");

}
s e 3 =
other
public boolean equals (Object o) {
2 G AR to) Bl e A s R A T
return x == other.x && y == other.y;
pl >
}
pz iz heb v 3

21

Copyright 2010 by Pearson Education




omparing diffee types

PoinE D n e e Do
if (p.equals("hello")) { // should be false

» Currently our method crashes on the above code:

Exception 1n thread "main"

e ra gt Pas S G e e iU E O R e S S R S TR
ab i Rornt e guallEsi RO S faiEainz o)
B S I M r e I R Ll o I S O B S P RO B S AR

» The culprit is the line with the type-cast:

public boolean equals (Object o) {
| TR Ok B O R Y S e 2 o W A B R S

22

Copyright 2010 by Pearson Education




"~ The instanceof keyword

if (variable instanceof type) {

statement(s);

e Asks if a variable refers
to an object of a given type.
e Used as a boolean test.

String s = "hello";
Pornt-spr esnewsRPotnt (5

Copyright 2010 by Pearson Education

expression result
s 1nstanceof Point false
SRS e C O SH I FECY true
p instanceof Point true
p instanceof String false
p instanceof Object true
s 1instanceof Object true
null instanceof String | false
null instanceof Object | false
23




AR \

Final equals mehod

e

// Returns whether o refers to a Point object with

// the same (x, y) coordinates as this Point.
public boolean equals (Object o) {

i1f (o instanceof Point) {
// o is a Point; cast and compare it

I b e n e e G ST e 5 o R
return X == other.x && y == other.y;
} else {

// o is not a Point; cannot be equal
return false;

24
Copyright 2010 by Pearson Education




