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Building Java Programs

Chapter 8

Lecture 8-3: Encapsulation;
this; comparing objects

reading: 8.3 - 8.4; 9.2
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Encapsulation

� encapsulation: Hiding implementation details from clients.

� Encapsulation forces abstraction.

� separates external view (behavior) from internal view (state)

� protects the integrity of an object's data
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Private fields
A field that cannot be accessed from outside the class

private type name;

� Examples:

private int id;

private String name;

� Client code won't compile if it accesses private fields:

PointMain.java:11: x has private access in Point

System.out.println(p1.x);

^
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Accessing private state
// A "read-only" access to the x field ("accessor")

public int getX() {

return x;

}

// Allows clients to change the x field ("mutator")

public void setX(int newX) {

x = newX;

}

� Client code will look more like this:

System.out.println(p1.getX());

p1.setX(14);
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Point class, version 4
// A Point object represents an (x, y) location.
public class Point {

private int x;
private int y;

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public int getX() {
return x;

}

public int getY() {
return y;

}

public double distanceFromOrigin() {
return Math.sqrt(x * x + y * y);

}

public void setLocation(int newX, int newY) {
x = newX;
y = newY;

}

public void translate(int dx, int dy) {
setLocation(x + dx, y + dy);

}
}
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Benefits of encapsulation

� Abstraction between object and clients

� Protects object from unwanted access

� Example: Can't fraudulently increase an Account's balance.

� Can change the class implementation later

� Example: Point could be rewritten in polar

coordinates (r, θ) with the same methods.

� Can constrain objects' state (invariants)

� Example: Only allow Accounts with non-negative balance.

� Example: Only allow Dates with a month from 1-12.
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The keyword this

reading: 8.3
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The this keyword

� this : Refers to the implicit parameter inside your class.

(a variable that stores the object on which a method is called)

� Refer to a field: this.field

� Call a method: this.method(parameters);

� One constructor this(parameters);

can call another:
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Variable shadowing
� shadowing: 2 variables with same name in same scope.

� Normally illegal, except when one variable is a field.

public class Point {

private int x;

private int y;

...

// this is legal

public void setLocation(int x, int y) {

...

}

� In most of the class, x and y refer to the fields.

� In setLocation, x and y refer to the method's parameters.
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Fixing shadowing
public class Point {

private int x;

private int y;

...

public void setLocation(int x, int y) {

this.x = x;

this.y = y;

}

}

� Inside setLocation,

� To refer to the data field x, say this.x

� To refer to the parameter x, say x
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Calling another constructor
public class Point {

private int x;

private int y;

public Point() {

this(0, 0);     // calls (x, y) constructor
}

public Point(int x, int y) {
this.x = x;
this.y = y;

}

...

}

� Avoids redundancy between constructors

� Only a constructor (not a method) can call another constructor
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The equals method

reading: 9.2
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Class Object

� Java has a class named Object.

� Every class is implicitly an Object

� The Object class defines several methods

that become part of every class you write:

� public String toString()

Returns a text representation of the object,
usually so that it can be printed.

� public boolean equals(Object other)

Compare the object to any other for equality.
Returns true if the objects have equal state.
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Recall: comparing objects
� The == operator does not work well with objects.

== compares references to objects, not their state.

It only produces true when you compare an object to itself.

Point p1 = new Point(5, 3);

Point p2 = new Point(5, 3);

Point p3 = p2;

// p1 == p2 is false;

// p1 == p3 is false;

// p2 == p3 is true

...

x 5 y 3
p1

p2

...

x 5 y 3

p3
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The equals method

� The equals method compares the state of objects.

if (str1.equals(str2)) {

System.out.println("the strings are equal");

}

� But if you write a class, its equals method behaves like ==

if (p1.equals(p2)) {   // false :-(

System.out.println("equal");

}

� This is the default behavior we receive from class Object.

� Java doesn't understand how to compare Points by default.
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Flawed equals method

� We can change this behavior by writing an equals method.

� Ours will override the default behavior from class Object.

� The method should compare the state of the two objects and 

return true if they have the same x/y position.

� A flawed implementation:

public boolean equals(Point other) {

if (x == other.x && y == other.y) {

return true;

} else {

return false;

}

}



Copyright 2010 by Pearson Education
17

Flaws in our method
� The body can be shortened to the following:

// boolean zen

return x == other.x && y == other.y;

� It should be legal to compare a Point to any object
(not just other Points):

// this should be allowed

Point p = new Point(7, 2);

if (p.equals("hello")) {   // false

...

� equals should always return false if a non-Point is passed.
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equals and Object
public boolean equals(Object name) {

statement(s) that return a boolean value ;

}

� The parameter to equals must be of type Object.

� Object is a general type that can match any object.

� Having an Object parameter means any object can be passed.

� If we don't know what type it is, how can we compare it?
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Another flawed version
� Another flawed equals implementation:

public boolean equals(Object o) {

return x == o.x && y == o.y;

}

� It does not compile:

Point.java:36: cannot find symbol

symbol  : variable x

location: class java.lang.Object

return x == o.x && y == o.y;

^

� The compiler is saying,

"o could be any object. Not every object has an x field."
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Type-casting objects
� Solution: Type-cast the object parameter to a Point.

public boolean equals(Object o) {

Point other = (Point) o;

return x == other.x && y == other.y;

}

� Casting objects is different than casting primitives.

� Really casting an Object reference into a Point reference.

� Doesn't actually change the object that was passed.

� Tells the compiler to assume that o refers to a Point object.
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Casting objects diagram
� Client code:

Point p1 = new Point(5, 3);

Point p2 = new Point(5, 3);

if (p1.equals(p2)) {

System.out.println("equal");

}

public boolean equals(Object o) {

Point other = (Point) o;

return x == other.x && y == other.y;

}

3y5x

p1

p2

...

3y5x

o

other
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Comparing different types
Point p = new Point(7, 2);

if (p.equals("hello")) {   // should be false

...

}

� Currently our method crashes on the above code:

Exception in thread "main"

java.lang.ClassCastException: java.lang.String

at Point.equals(Point.java:25)

at PointMain.main(PointMain.java:25)

� The culprit is the line with the type-cast:

public boolean equals(Object o) {

Point other = (Point) o;
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The instanceof keyword
if (variable instanceof type) {

statement(s);

}

� Asks if a variable refers
to an object of a given type.

� Used as a boolean test.

String s = "hello";

Point p = new Point();

falsenull instanceof Object

falsep instanceof String

truep instanceof Object

falsenull instanceof String

trues instanceof Object

truep instanceof Point

trues instanceof String

falses instanceof Point

resultexpression
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Final equals method

// Returns whether o refers to a Point object with 

// the same (x, y) coordinates as this Point.

public boolean equals(Object o) {

if (o instanceof Point) {

// o is a Point; cast and compare it

Point other = (Point) o;

return x == other.x && y == other.y;

} else {

// o is not a Point; cannot be equal

return false;

}

}


