
hi

bye 1

Copyright 2010 by Pearson Education

Homework 9:
Critters (cont.)

reading: HW9 spec

Copyright 2010 by Pearson Education
2

Critter exercise: Snake
Method Behavior

constructor public Snake()

eat Never eats

fight always forfeits

getColor black

getMove 1 E, 1 S; 2 W, 1 S; 3 E, 1 S; 4 W, 1 S; 5 E, ...

toString "S"

Copyright 2010 by Pearson Education
3

Determining necessary fields
  Information required to decide what move to make?

  Direction to go in
  Length of current cycle
  Number of moves made in current cycle

  Remembering things you've done in the past:
  an int counter?
  a boolean flag?

Copyright 2010 by Pearson Education
4

Snake solution
import java.awt.*; // for Color
public class Snake extends Critter {
 private int length; // # steps in current horizontal cycle
 private int step; // # of cycle's steps already taken
 public Snake() {
 length = 1;
 step = 0;
 }

 public Direction getMove() {
 step++;
 if (step > length) { // cycle was just completed
 length++;
 step = 0;
 return Direction.SOUTH;
 } else if (length % 2 == 1) {
 return Direction.EAST;
 } else {
 return Direction.WEST;
 }
 }

 public String toString() {
 return "S";
 }
}

Copyright 2010 by Pearson Education

Building Java Programs

Chapter 8
Lecture 8-4: Static Methods and Fields

Copyright 2010 by Pearson Education
6

Critter exercise: FratGuy
  All the frat guys are trying to get to the same party.

  The party is at a randomly-generated board location
(On the 60-by-50 world)

  They stumble north then east until they reach the party

hi

bye 2

Copyright 2010 by Pearson Education
7

A flawed solution
import java.util.*; // for Random

public class FratGuy extends Critter {
 private int partyX;
 private int partyY;

 public FratGuy() {
 Random r = new Random();
 partyX = r.nextInt(60);
 partyY = r.nextInt(50);
 }

 public Direction getMove() {
 if (getY() != partyY) {
 return Direction.NORTH;
 } else if (getX() != partyX) {
 return Direction.EAST;
 } else {
 return Direction.CENTER;
 }
 }
}

  Problem: Each frat guy goes to his own party.
We want all frat guys to share the same party location.

Copyright 2010 by Pearson Education
8

Static members
  static: Part of a class, rather than part of an object.

  Object classes can have static methods and fields.
  Not copied into each object; shared by all objects of that class.

class
state:
private static int staticFieldA
private static String staticFieldB
behavior:
public static void someStaticMethodC()
public static void someStaticMethodD()

object #1
state:
int field2
double field2

behavior:
public void method3()
public int method4()
public void method5()

object #2
state:
int field1
double field2

behavior:
public void method3()
public int method4()
public void method5()

object #3
state:
int field1
double field2

behavior:
public void method3()
public int method4()
public void method5()

Copyright 2010 by Pearson Education
9

Static fields
 private static type name;
 or,
 private static type name = value;

  Example:
 private static int theAnswer = 42;

  static field: Stored in the class instead of each object.
  A "shared" global field that all objects can access and modify.
  Like a class constant, except that its value can be changed.

Copyright 2010 by Pearson Education
10

Accessing static fields
  From inside the class where the field was declared:

 fieldName // get the value
 fieldName = value; // set the value

  From another class (if the field is public):

 ClassName.fieldName // get the value
 ClassName.fieldName = value; // set the value

  generally static fields are not public unless they are final

  Exercise: Modify the BankAccount class shown previously
so that each account is automatically given a unique ID.

  Exercise: Write the working version of FratGuy.

Copyright 2010 by Pearson Education
11

BankAccount solution
public class BankAccount {

 // static count of how many accounts are created
 // (only one count shared for the whole class)
 private static int objectCount = 0;

 // fields (replicated for each object)
 private String name;
 private int id;

 public BankAccount() {
 objectCount++; // advance the id, and
 id = objectCount; // give number to account
 }

 ...

 public int getID() { // return this account's id
 return id;
 }
}

Copyright 2010 by Pearson Education
12

FratGuy solution
import java.util.*; // for Random

public class FratGuy extends Critter {
 // static fields (shared by all frat guys)
 private static int partyX = -1;
 private static int partyY = -1;

 // object constructor/methods (replicated into each frat guy)
 public FratGuy() {
 if (partyX < 0 || partyY < 0) {
 Random r = new Random(); // the 1st frat guy created
 partyX = r.nextInt(60); // chooses the party location
 partyY = r.nextInt(50); // for all frat guys to go to
 }
 }

 public Direction getMove() {
 if (getY() != partyY) {
 return Direction.NORTH;
 } else if (getX() != partyX) {
 return Direction.EAST;
 } else {
 return Direction.CENTER;
 }
 }
}

hi

bye 3

Copyright 2010 by Pearson Education
13

Static methods
 // the same syntax you've already used for methods
 public static type name(parameters) {
 statements;
 }

  static method: Stored in a class, not in an object.

  Shared by all objects of the class, not replicated.

  Does not have any implicit parameter, this;
therefore, cannot access any particular object's fields.

  Exercise: Make it so that clients can find out how many
total BankAccount objects have ever been created.

Copyright 2010 by Pearson Education
14

BankAccount solution
public class BankAccount {
 // static count of how many accounts are created
 // (only one count shared for the whole class)
 private static int objectCount = 0;

 // clients can call this to find out # accounts created
 public static int getNumAccounts() {
 return objectCount;
 }

 // fields (replicated for each object)
 private String name;
 private int id;

 public BankAccount() {
 objectCount++; // advance the id, and
 id = objectCount; // give number to account
 }
 ...
 public int getID() { // return this account's id
 return id;
 }
}

Copyright 2010 by Pearson Education
15

Advanced FratGuy exercise
  A party is no fun if it's too crowded.

  Modify FratGuy so that a party will be attended
by no more than 10 frat guys.

  Every 10th frat guy should choose a new party location for
himself and the next 9 of his friends to be constructed.

  first ten frat guys go to party #1
  next ten frat guys go to party #2
  ...

Copyright 2010 by Pearson Education
16

Advanced FratGuy solution
import java.util.*; // for Random

public class FratGuy extends Critter {
 // static fields (shared by all frat guys)
 private static int ourPartyX = -1;
 private static int ourPartyY = -1;
 private static int objectCount = 0;

 // chooses the party location for future frat guys to go to
 public static void choosePartySpot() {
 Random r = new Random();
 ourPartyX = r.nextInt(60);
 ourPartyY = r.nextInt(50);
 }

 // object fields/constructor/methods (replicated in each frat guy)
 private int myPartyX;
 private int myPartyY;

 ...

Copyright 2010 by Pearson Education
17

Advanced FratGuy solution 2
 ...

 public FratGuy() {
 // every 10th one chooses a new party spot for future FratGuys
 if (objectCount % 10 == 0) {
 choosePartySpot();
 }

 // must remember his party spot so they aren't all the same
 myPartyX = ourPartyX;
 myPartyY = ourPartyY;
 }

 public Direction getMove() {
 if (getY() != myPartyY) {
 return Direction.NORTH;
 } else if (getX() != myPartyX) {
 return Direction.EAST;
 } else {
 return Direction.CENTER;
 }
 }
}

Copyright 2010 by Pearson Education
18

Multi-class systems
  Most large software systems consist of many classes.

  One main class runs and calls methods of the others.

  Advantages:
  code reuse
  splits up the program logic into manageable chunks

Main Class #1
main

method1

method2

Class #2
method3

method5

Class #3
method4

method6

hi

bye 4

Copyright 2010 by Pearson Education
19

Redundant program 1
// This program sees whether some interesting numbers are prime.

public class Primes1 {
 public static void main(String[] args) {
 int[] nums = {1234517, 859501, 53, 142};
 for (int i = 0; i < nums.length; i++) {
 if (isPrime(nums[i])) {
 System.out.println(nums[i] + " is prime");
 }
 }
 }

 // Returns the number of factors of the given integer.
 public static int countFactors(int number) {
 int count = 0;
 for (int i = 1; i <= number; i++) {
 if (number % i == 0) {
 count++; // i is a factor of the number
 }
 }
 return count;
 }

 // Returns true if the given number is prime.
 public static boolean isPrime(int number) {
 return countFactors(number) == 2;
 }
}

Copyright 2010 by Pearson Education
20

Redundant program 2
// This program prints all prime numbers up to a maximum.
public class Primes2 {
 public static void main(String[] args) {
 Scanner console = new Scanner(System.in);
 System.out.print("Max number? ");
 int max = console.nextInt();
 for (int i = 2; i <= max; i++) {
 if (isPrime(i)) {
 System.out.print(i + " ");
 } }
 System.out.println();
 }

 // Returns true if the given number is prime.
 public static boolean isPrime(int number) {
 return countFactors(number) == 2;
 }

 // Returns the number of factors of the given integer.
 public static int countFactors(int number) {
 int count = 0;
 for (int i = 1; i <= number; i++) {
 if (number % i == 0) {
 count++; // i is a factor of the number
 } }
 return count;
 }
}

Copyright 2010 by Pearson Education
21

Classes as modules
  module: A reusable piece of software, stored as a class.

  Example module classes: Math, Arrays, System

// This class is a module that contains useful methods
// related to factors and prime numbers.
public class Factors {
 // Returns the number of factors of the given integer.
 public static int countFactors(int number) {
 int count = 0;
 for (int i = 1; i <= number; i++) {
 if (number % i == 0) {
 count++; // i is a factor of the number
 }
 }

 return count;
 }

 // Returns true if the given number is prime.
 public static boolean isPrime(int number) {
 return countFactors(number) == 2;
 }
}

Copyright 2010 by Pearson Education
22

More about modules
  A module is a partial program, not a complete program.

  It does not have a main. You don't run it directly.
  Modules are meant to be utilized by other client classes.

  Syntax:

 class.method(parameters);

  Example:

 int factorsOf24 = Factors.countFactors(24);

Copyright 2010 by Pearson Education
23

Using a module
// This program sees whether some interesting numbers are prime.

public class Primes {
 public static void main(String[] args) {
 int[] nums = {1234517, 859501, 53, 142};
 for (int i = 0; i < nums.length; i++) {
 if (Factors.isPrime(nums[i])) {
 System.out.println(nums[i] + " is prime");
 }
 }
 }
}

// This program prints all prime numbers up to a given maximum.
public class Primes2 {
 public static void main(String[] args) {
 Scanner console = new Scanner(System.in);
 System.out.print("Max number? ");
 int max = console.nextInt();
 for (int i = 2; i <= max; i++) {
 if (Factors.isPrime(i)) {
 System.out.print(i + " ");
 } }
 System.out.println();
 }
}

Copyright 2010 by Pearson Education
24

Modules in Java libraries
// Java's built in Math class is a module
public class Math {
 public static final double PI = 3.14159265358979323846;

 ...

 public static int abs(int a) {
 if (a >= 0) {
 return a;
 } else {
 return -a;
 }
 }

 public static double toDegrees(double radians) {
 return radians * 180 / PI;
 }
}

hi

bye 5

Copyright 2010 by Pearson Education
25

Summary of Java classes
  A class is used for any of the following in a large program:

  a program : Has a main and perhaps other static methods.
  example: GuessingGame, Birthday, MadLibs, CritterMain
  does not usually declare any static fields (except final)

  an object class : Defines a new type of objects.
  example: Point, BankAccount, Date, Critter, FratGuy
  declares object fields, constructor(s), and methods
  might declare static fields or methods, but these are less of a focus
  should be encapsulated (all fields and static fields private)

  a module : Utility code implemented as static methods.
  example: Math

