Building Java Programs

Chapter 2

Lecture 2-2: The for Loop
reading: 2.3

Repetition with for loops

- So far, repeating a statement is redundant:

```
System.out.println("Homer says:");
System.out.println("I am so smart");
System.out.println("I am so smart");
System.out.println("I am so smart");
System.out.println("I am so smart");
System.out.println("S-M-R-T... I mean S-M-A-R-T");
```

- Java's for loop statement performs a task many times.

```
System.out.println("Homer says:");
for (int i = 1; i <= 4; i++) { // repeat 4 times
    System.out.println("I am so smart");
}
System.out.println("S-M-R-T... I mean S-M-A-R-T");
```


for loop syntax

for (<initialization>; <test>; <update>) { } header
for (<initialization>; <test>; <update>) { } header
<statement>;
<statement>;
<statement>;
<statement>;
<statement>;
<statement>;
}
}

- Perform <initialization> once.
- Repeat the following:
- Check if the <test> is true. If not, stop.
- Execute the <statement>s.
- Perform the <update>.

Initialization

```
for (int i = 1; i <= 4; i++) {
        System.out.println("I am so smart");
}
```

- Tells Java what variable to use in the loop
- Performed once as the loop begins
- The variable is called a loop counter
- can use any name, not just i
- can start at any value, not just 1

```
                Test
for (int i = 1; i <= 4; i++) {
    System.out.println("I am so smart");
}
```

- Tests the loop counter variable against a limit
- Uses comparison operators:
< less than
$<=$ less than or equal to
$>$ greater than
$>=$ greater than or equal to

Increment and decrement

shortcuts to increase or decrease a variable's value by 1

Shorthand
<variable>++;
<variable>--;
int $\mathrm{x}=2$;
x++;
double gpa = 2.5;
gpa--;
// $x=x+1$;
// x now stores 3
Equivalent longer version
<variable> = <variable> + 1;
<variable> = <variable> - 1;
// gpa = gpa - 1;
// gpa now stores 1.5

Modify-and-assign operators

shortcuts to modify a variable's value

Shorthand
<variable> += <exp>;
<variable> -= <exp>;
<variable> *= <exp>;
<variable> /= <exp>;
<variable> \%= <exp>;
$x+=3 ;$
gpa -= 0.5;
number *= $2+1$;

Equivalent longer version
<variable> = <variable> + (<exp>) ;
<variable> = <variable> - (<exp>) ;
<variable> = <variable> * (<exp>);
<variable> = <variable> / (<exp>);
<variable> = <variable> \% (<exp>);
// $x=x+3 ;$
// gрa = gpa - 0.5;
// number $=$ number * $(2+1)$;

for loop is NOT a method

- The for loop is a control structure-a syntactic structure that controls the execution of other statements.
- Example:
- "Shampoo hair. Rinse. Repeat."

Repetition over a range

```
System.out.println("1 squared = " + 1 * 1);
System.out.println("2 squared = " + 2 * 2);
System.out.println("3 squared = " + 3 * 3);
System.out.println("4 squared = " + 4 * 4);
System.out.println("5 squared = " + 5 * 5);
System.out.println("6 squared = " + 6 * 6);
```

- Intuition: "I want to print a line for each number from 1 to 6 "
- The for loop does exactly that!

```
for (int i = 1; i <= 6; i++) {
            System.out.println(i + " squared = " + (i * i));
}
```

- "For each integer i from 1 through 6, print ..."
Loop walkthrough
1
2
4
for (int i = 1; i <= 4; i++) \{
3 System. out.println(i + " squared $=$ " + (i * i));
\}
5 System.out.println("Whoo!");

Multi-line loop body

```
System.out.println("+----+");
for (int i = 1; i <= 3; i++) {
    System.out.println("\\ /");
    System.out.println("/ \\");
}
System.out.println("+----+");
```

- Output:
+----+

11
+----

Expressions for counter

```
int highTemp = 5;
for (int i = -3; i <= highTemp / 2; i++) {
        System.out.println(i * 1.8 + 32);
}
```

- This computes the Fahrenheit equivalents for -3 degrees Celsius to 2 degrees Celsius.
- Output:
26.6
28.4
30.2
32.0
33.8
35.6

System.out.print

- Prints without moving to a new line
- allows you to print partial messages on the same line

```
int highestTemp = 5;
for (int i = -3; i <= highestTemp / 2; i++) {
            System.out.print((i * 1.8 + 32) + " ");
}
```

- Output:
$\begin{array}{llllll}26.6 & 28.4 & 30.2 & 32.0 & 33.8 & 35.6\end{array}$
- Concatenate " " to separate the numbers

Counting down

- The <update> can use -- to make the loop count down.
- The <test> must say > instead of <

```
System.out.print("T-minus ");
for (int i = 10; i >= 1; i--) {
    System.out.print(i + ", ");
}
System.out.println("blastoff!");
System.out.println("The end.");
```

- Output:

T-minus 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, blastoff! The end.

Nested loops

reading: $\mathbf{2 . 3}$

Nested loops

- nested loop: A loop placed inside another loop.

```
for (int i = 1; i <= 5; i++) {
    for (int j = 1; j <= 10; j++) {
            System.out.print("*");
            }
            System.out.println(); // to end the line
}
```

- Output:

- The outer loop repeats 5 times; the inner one 10 times.
- "sets and reps" exercise analogy

Nested for loop exercise

- What is the output of the following nested for loops?

```
for (int i = 1; i <= 5; i++) {
    for (int j = 1; j <= i; j++) {
        System.out.print("*");
        }
        System.out.println();
}
```

- Output:
*

**

Nested for loop exercise

- What is the output of the following nested for loops?

```
for (int i = 1; i <= 5; i++) {
        for (int j = 1; j <= i; j++) {
            System.out.print(i);
        }
        System.out.println();
}
```

- Output:

1
22
333
4444
55555

Common errors

- Both of the following sets of code produce infinite loops:

```
for (int i = 1; i <= 5; i++) {
    for (int j = 1; i <= 10; j++) {
        System.out.print("*");
        }
    System.out.println();
}
for (int i = 1; i <= 5; i++) {
        for (int j = 1; j <= 10; i++) {
            System.out.print("*");
        }
        System.out.println();
}
```


Complex lines

- What nested for loops produce the following output?
inner loop (repeated characters on each line)

.... 1
... 2
. .3 outer loop (loops 5 times because there are 5 lines)
.4
5
- We must build multiple complex lines of output using:
- an outer "vertical" loop for each of the lines
- inner "horizontal" loop(s) for the patterns within each line

Outer and inner loop

- First write the outer loop, from 1 to the number of lines.

```
for (int line = 1; line <= 5; line++) {
    ...
}
```

- Now look at the line contents. Each line has a pattern: - some dots (0 dots on the last line), then a number

```
.... 1
```

. . . 2
. . 3
. 4
5

- Observation: the number of dots is related to the line number.

Mapping loops to numbers

```
for (int count = 1; count <= 5; count++) {
        System.out.print( ... );
}
```

- What statement in the body would cause the loop to print:

47101316
for (int count $=1$; count $<=5$; count++) \{ System.out.print(3 * count + 1 + " ");
\}

Loop tables

- What statement in the body would cause the loop to print:

27121722

- To see patterns, make a table of count and the numbers.
- Each time count goes up by 1, the number should go up by 5 .
- But count * 5 is too great by 3 , so we subtract 3 .

count	number to print	$5 *$ count	$5 *$ count -3
1	2	5	2
2	7	10	7
3	12	15	12
4	17	20	17
5	22	25	22

Loop tables question

- What statement in the body would cause the loop to print:

1713951

- Let's create the loop table together.
- Each time count goes up 1, the number printed should ...
- But this multiple is off by a margin of ...

count	number to print	$-4 *$ count	$-4 *$ count +21
1	17	-4	17
2	13	-8	13
3	9	-12	9
4	5	-16	5
5	1	-20	1

Another view: Slope-intercept

- The next three slides present the mathematical basis for the loop tables. Feel free to skip it.

count (x)	number to print (y)
1	2
2	7
3	12
4	17
5	22

Another view: Slope-intercept

- Caution: This is algebra, not assignment!
- Recall: slope-intercept form ($y=m x+b$)
- Slope is defined as "rise over run" (i.e. rise / run). Since the "run" is always 1 (we increment along x by 1), we just need to look at the "rise". The rise is the difference between the y values. Thus, the slope (m) is the difference between y values; in this case, it is +5 .
- To compute the y-intercept (b), plug in the value of y at $x=1$ and solve for b . In this case, $\mathrm{y}=2$.
$\mathrm{y}=\mathrm{m} * \mathrm{x}+\mathrm{b}$
$2=5 * 1+b$
Then $\mathrm{b}=-3$
- So the equation is
$y=m * x+b$
$y=5 * x-3$
$\mathrm{y}=5$ * count - 3

count (x)	number to print (y)
1	2
2	7
3	12
4	17
5	22

Another view: Slope-intercept

- Algebraically, if we always take the value of y at $x=1$, then we can solve for b as follows:
$y=m * x+b$
$y_{1}=m * 1+b$
$y_{1}=m+b$
$\mathrm{b}=\mathrm{y}_{1}-\mathrm{m}$
- In other words, to get the y-intercept, just subtract the slope from the first y value $(\mathrm{b}=2-5=-3)$
- This gets us the equation
$y=m * x+b$
$y=5 * x-3$
$y=5$ * count - 3
(which is exactly the equation from the previous slides)

Nested for loop exercise

- Make a table to represent any patterns on each line.
.... 1
.. . 2
. . 3
. 4
5

line	\# of dots	$-1 *$ line	$-1 *$ line +5
1	4	-1	4
2	3	-2	3
3	2	-3	2
4	1	-4	1
5	0	-5	0

- To print a character multiple times, use a for loop.

```
for (int j = 1; j <= 4; j++) {
    System.out.print("."); // 4 dots
}
```

```
    Nested for loop solution
    - Answer:
    for (int line = 1; line <= 5; line++) {
        for (int j = 1; j <= (-1 * line + 5); j++) {
        System.out.print(".");
        }
        System.out.println(line);
    }
- Output:
. . . . 1
... 2
. . 3
. 4
5

\section*{Nested for loop exercise}
- What is the output of the following nested for loops?
for (int line = 1; line <= 5; line++) \{
for (int j = 1; j <= (-1 * line + 5) ; j++) \{ System.out.print(".");
\}
for (int \(k=1 ; k<=\) line; \(k++\) ) \(\{\) System.out.print(line);
\}
System.out.println();
\}
- Answer:
.... 1
.. . 22
. 333
. 4444
55555

\section*{Nested for loop exercise}
- Modify the previous code to produce this output:
.... 1
... 2 .
.. 3.
.4...
5....
- Answer:
for (int line = 1; line <= 5; line++) \{
for (int \(j=1 ; j<=(-1\) * line +5\() ; j++\) ) \{ System.out.print(".");
\}
System.out.print(line);
for (int \(j=1\); \(j<=(\) line - 1) ; j++) \(\{\) System.out.print(".");
\}
System.out.println();
\}```

