
Copyright 2010 by Pearson Education

Building Java Programs

Chapter 8

Lecture 8-2: Object Behavior (Methods)
and Constructors

reading: 8.2 - 8.3

Copyright 2010 by Pearson Education
2

Recall: Instance methods
� instance method (or object method): Exists inside each

object of a class and gives behavior to each object.

public type name(parameters) {

statements;

}

� same syntax as static methods, but without static keyword

Example:

public void shout() {
System.out.println("HELLO THERE!");

}

Copyright 2010 by Pearson Education
3

� Each Point object has its own copy of the draw method, which

operates on that object's state:

Point p1 = new Point();
p1.x = 7;
p1.y = 2;

Point p2 = new Point();
p2.x = 4;
p2.y = 3;

p1.draw(g);
p2.draw(g);

public void draw(Graphics g) {
// this code can see p1's x and y

}

Point objects w/ method

2y7x

3y4x

public void draw(Graphics g) {
// this code can see p2's x and y

}

p2

p1

Copyright 2010 by Pearson Education
4

The implicit parameter

� implicit parameter:

The object on which an instance method is called.

� During the call p1.draw(g);

the object referred to by p1 is the implicit parameter.

� During the call p2.draw(g);

the object referred to by p2 is the implicit parameter.

� The instance method can refer to that object's fields.

� We say that it executes in the context of a particular object.

� draw can refer to the x and y of the object it was called on.

Copyright 2010 by Pearson Education
5

Point class, version 2
public class Point {

int x;
int y;

// Changes the location of this Point object.
public void draw(Graphics g) {

g.fillOval(x, y, 3, 3);
g.drawString("(" + x + ", " + y + ")", x, y);

}
}

� Each Point object contains a draw method that draws that

point at its current x/y position.

Copyright 2010 by Pearson Education
6

Kinds of methods
� accessor: A method that lets clients examine object state.

� Examples: distance, distanceFromOrigin

� often has a non-void return type

� mutator: A method that modifies an object's state.

� Examples: setLocation, translate

Copyright 2010 by Pearson Education
7

Mutator method questions
� Write a method setLocation that changes a Point's

location to the (x, y) values passed.

� Write a method translate that changes a Point's location
by a given dx, dy amount.

� Modify the Point and client code to use these methods.

Copyright 2010 by Pearson Education
8

Mutator method answers
public void setLocation(int newX, int newY) {

x = newX;
y = newY;

}

public void translate(int dx, int dy) {
x = x + dx;
y = y + dy;

}

// alternative solution that utilizes setLocation
public void translate(int dx, int dy) {

setLocation(x + dx, y + dy);
}

Copyright 2010 by Pearson Education
9

Accessor method questions
� Write a method distance that computes the distance

between a Point and another Point parameter.

Use the formula:

� Write a method distanceFromOrigin that returns the
distance between a Point and the origin, (0, 0).

� Modify the client code to use these methods.

() ()2
12

2
12 yyxx −+−

Copyright 2010 by Pearson Education
10

Accessor method answers
public double distance(Point other) {

int dx = x - other.x;
int dy = y - other.y;
return Math.sqrt(dx * dx + dy * dy);

}

public double distanceFromOrigin() {
return Math.sqrt(x * x + y * y);

}

// alternative solution that uses distance
public double distanceFromOrigin() {

Point origin = new Point();
return distance(origin);

}

Copyright 2010 by Pearson Education
11

Printing objects
� By default, Java doesn't know how to print objects:

Point p = new Point();
p.x = 10;
p.y = 7;
System.out.println("p is " + p); // p is Point@9e8c34

// better, but cumbersome; p is (10, 7)

System.out.println("p is (" + p.x + ", " + p.y + ")");

// desired behavior
System.out.println("p is " + p); // p is (10, 7)

Copyright 2010 by Pearson Education
12

The toString method

tells Java how to convert an object into a String

Point p1 = new Point(7, 2);
System.out.println("p1: " + p1);

// the above code is really calling the following:
System.out.println("p1: " + p1.toString());

� Every class has a toString, even if it isn't in your code.

� Default: class's name @ object's memory address (base 16)

Point@9e8c34

Copyright 2010 by Pearson Education
13

toString syntax
public String toString() {

code that returns a String representing this object;
}

� Method name, return, and parameters must match exactly.

� Example:

// Returns a String representing this Point.
public String toString() {

return "(" + x + ", " + y + ")";
}

14
Copyright 2010 by Pearson Education

Object initialization:
constructors

reading: 8.3

Copyright 2010 by Pearson Education
15

Initializing objects
� Currently it takes 3 lines to create a Point and initialize it:

Point p = new Point();
p.x = 3;
p.y = 8; // tedious

� We'd rather specify the fields' initial values at the start:

Point p = new Point(3, 8); // better!

� We are able to this with most types of objects in Java.

Copyright 2010 by Pearson Education
16

Constructors

� constructor: Initializes the state of new objects.

public type(parameters) {
statements;

}

� runs when the client uses the new keyword

� no return type is specified;

it implicitly "returns" the new object being created

� If a class has no constructor, Java gives it a default

constructor with no parameters that sets all fields to 0.

Copyright 2010 by Pearson Education
17

Constructor example

public class Point {
int x;
int y;

// Constructs a Point at the given x/y location.
public Point(int initialX, int initialY) {

x = initialX;
y = initialY;

}

public void translate(int dx, int dy) {
x = x + dx;
y = y + dy;

}

...
}

Copyright 2010 by Pearson Education
18

Tracing a constructor call
� What happens when the following call is made?

Point p1 = new Point(7, 2);

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public void translate(int dx, int dy) {
x += dx;
y += dy;

}

yxp1

Copyright 2010 by Pearson Education
19

Client code, version 3
public class PointMain3 {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point(5, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1: (" + p1.x + ", " + p1.y + ")");
System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

// move p2 and then print it again
p2.translate(2, 4);
System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

}
}

OUTPUT:
p1: (5, 2)
p2: (4, 3)
p2: (6, 7)

Copyright 2010 by Pearson Education
20

Multiple constructors
� A class can have multiple constructors.

� Each one must accept a unique set of parameters.

� Exercise: Write a Point constructor with no parameters

that initializes the point to (0, 0).

// Constructs a new point at (0, 0).
public Point() {

x = 0;
y = 0;

}

Copyright 2010 by Pearson Education
21

Common constructor bugs
1. Re-declaring fields as local variables ("shadowing"):

public Point(int initialX, int initialY) {
int x = initialX;
int y = initialY;

}

� This declares local variables with the same name as the fields,
rather than storing values into the fields. The fields remain 0.

2. Accidentally giving the constructor a return type:

public void Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

� This is actually not a constructor, but a method named Point

