
Copyright 2010 by Pearson Education

Building Java Programs

Chapter 8

Lecture 8-3: Encapsulation;
Homework 8 (Critters)

reading: 8.3 - 8.4

2
Copyright 2010 by Pearson Education

Encapsulation

reading: 8.4

Copyright 2010 by Pearson Education
3

Encapsulation

� encapsulation: Hiding implementation details from clients.

� Encapsulation forces abstraction.

� separates external view (behavior) from internal view (state)

� protects the integrity of an object's data

Copyright 2010 by Pearson Education
4

Private fields
A field that cannot be accessed from outside the class

private type name;

� Examples:

private int id;

private String name;

� Client code won't compile if it accesses private fields:

PointMain.java:11: x has private access in Point

System.out.println(p1.x);

^

Copyright 2010 by Pearson Education
5

Accessing private state
// A "read-only" access to the x field ("accessor")
public int getX() {

return x;
}

// Allows clients to change the x field ("mutator")
public void setX(int newX) {

x = newX;
}

� Client code will look more like this:

System.out.println(p1.getX());

p1.setX(14);

Copyright 2010 by Pearson Education
6

Point class, version 4
// A Point object represents an (x, y) location.
public class Point {

private int x;
private int y;

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public int getX() {
return x;

}

public int getY() {
return y;

}

public double distanceFromOrigin() {
return Math.sqrt(x * x + y * y);

}

public void setLocation(int newX, int newY) {
x = newX;
y = newY;

}

public void translate(int dx, int dy) {
setLocation(x + dx, y + dy);

}
}

Copyright 2010 by Pearson Education
7

Benefits of encapsulation

� Abstraction between object and clients

� Protects object from unwanted access

� Example: Can't fraudulently increase an Account's balance.

� Can change the class implementation later

� Example: Point could be rewritten in polar

coordinates (r, θ) with the same methods.

� Can constrain objects' state (invariants)

� Example: Only allow Accounts with non-negative balance.

� Example: Only allow Dates with a month from 1-12.

8
Copyright 2010 by Pearson Education

The keyword this

reading: 8.3

Copyright 2010 by Pearson Education
9

The this keyword

� this : Refers to the implicit parameter inside your class.

(a variable that stores the object on which a method is called)

� Refer to a field: this.field

� Call a method: this.method(parameters);

� One constructor this(parameters);
can call another:

Copyright 2010 by Pearson Education
10

Variable shadowing
� shadowing: 2 variables with same name in same scope.

� Normally illegal, except when one variable is a field.

public class Point {
private int x;
private int y;

...

// this is legal
public void setLocation(int x, int y) {

...
}

� In most of the class, x and y refer to the fields.

� In setLocation, x and y refer to the method's parameters.

Copyright 2010 by Pearson Education
11

Fixing shadowing
public class Point {

private int x;
private int y;

...

public void setLocation(int x, int y) {
this.x = x;
this.y = y;

}
}

� Inside setLocation,

� To refer to the data field x, say this.x

� To refer to the parameter x, say x

Copyright 2010 by Pearson Education
12

Calling another constructor
public class Point {

private int x;
private int y;

public Point() {
this(0, 0); // calls (x, y) constructor

}

public Point(int x, int y) {
this.x = x;
this.y = y;

}

...
}

� Avoids redundancy between constructors

� Only a constructor (not a method) can call another constructor

13
Copyright 2010 by Pearson Education

Homework 8:
Critters

reading: HW8 assignment spec

Copyright 2010 by Pearson Education
14

Critters
� A simulation world with animal objects with behavior:

� eat eating food

� fight animal fighting

� getColor color to display

� getMove movement

� toString letter to display

� You must implement:
� Ant

� Bird

� Hippo

� Vulture

� Husky (creative)

Copyright 2010 by Pearson Education
15

A Critter subclass

public class name extends Critter {

...

}

� extends Critter tells the simulator your class is a critter

� an example of inheritance

� Write some/all 5 methods to give your animals behavior.

Copyright 2010 by Pearson Education
16

How the simulator works
� When you press "Go", the simulator enters a loop:

� move each animal once (getMove), in random order

� if the animal has moved onto an occupied square, fight!

� if the animal has moved onto food, ask it if it wants to eat

� Key concept: The simulator is in control, NOT your animal.

� Example: getMove can return only one move at a time.
getMove can't use loops to return a sequence of moves.

� It wouldn't be fair to let one animal make many moves in one turn!

� Your animal must keep state (as fields) so that it can make a
single move, and know what moves to make later.

Copyright 2010 by Pearson Education
17

Critter exercise: Cougar

� Write a critter class Cougar (the dumbest of all animals):

public Cougar()constructor

"C"toString

Walks west until he finds food; then walks east
until he finds food; then goes west and repeats.

getMove

Blue if the Cougar has never fought; red if he has.getColor

Always pounces.fight

Always eats.eat

BehaviorMethod

Copyright 2010 by Pearson Education
18

Ideas for state
� You must not only have the right state, but update that
state properly when relevant actions occur.

� Counting is helpful:

� How many total moves has this animal made?

� How many times has it eaten? Fought?

� Remembering recent actions in fields is helpful:

� Which direction did the animal move last?

� How many times has it moved that way?

� Did the animal eat the last time it was asked?

� How many steps has the animal taken since last eating?

� How many fights has the animal been in since last eating?

Copyright 2010 by Pearson Education
19

Keeping state
� How can a critter move west until it finds food?

public Direction getMove() {
while (animal has not eaten) {

return Direction.EAST;
}
while (animal has not eaten a second time) {

return Direction.EAST;
}

}

private int moves; // total moves made by this Critter

public Direction getMove() {
moves++;
if (moves % 4 == 1 || moves % 4 == 2) {

return Direction.WEST;
} else {

return Direction.EAST;
}

}

Copyright 2010 by Pearson Education
20

Cougar solution
import java.awt.*; // for Color

public class Cougar extends Critter {
private boolean west;
private boolean fought;

public Cougar() {
west = true;
fought = false;

}

public boolean eat() {
west = !west;
return true;

}

public Attack fight(String opponent) {
fought = true;
return Attack.POUNCE;

}

...

Copyright 2010 by Pearson Education
21

Cougar solution
...

public Color getColor() {
if (fought) {

return Color.RED;
} else {

return Color.BLUE;
}

}

public Direction getMove() {
if (west) {

return Direction.WEST;
} else {

return Direction.EAST;
}

}

public String toString() {
return "C";

}
}

Copyright 2010 by Pearson Education
22

Testing critters
� Focus on one specific critter of one specific type

� Only spawn 1 of each animal, for debugging

� Make sure your fields update properly

� Use println statements to see field values

� Look at the behavior one step at a time

� Use "Tick" rather than "Go"

Copyright 2010 by Pearson Education
23

Critter exercise: Snake

public Snake()constructor

"S"toString

1 E, 1 S; 2 W, 1 S; 3 E, 1 S; 4 W, 1 S; 5 E, ...getMove

blackgetColor

always forfeitsfight

Never eatseat

BehaviorMethod

Copyright 2010 by Pearson Education
24

Determining necessary fields
� Information required to decide what move to make?

� Direction to go in

� Length of current cycle

� Number of moves made in current cycle

� Remembering things you've done in the past:

� an int counter?

� a boolean flag?

Copyright 2010 by Pearson Education
25

Snake solution
import java.awt.*; // for Color

public class Snake extends Critter {
private int length; // # steps in current horizontal cycle
private int step; // # of cycle's steps already taken

public Snake() {
length = 1;
step = 0;

}

public Direction getMove() {
step++;
if (step > length) { // cycle was just completed

length++;
step = 0;
return Direction.SOUTH;

} else if (length % 2 == 1) {
return Direction.EAST;

} else {
return Direction.WEST;

}
}

public String toString() {
return "S";

}
}

