Building Java Programs

Chapter 8

Lecture 8-3: Encapsulation;
Homework 8 (Critters)

reading: 8.3 - 8.4

Copyright 2010 by Pearson Education

Encapsulation

reading: 8.4

Copyright 2010 by Pearson Education

Encapsulation

¢ encapsulation: Hiding implementation details from clients.

» Encapsulation forces abstraction.
- separates external view (behavior) from internal view (state)

« protects the integrity of an object's data

4 Measure—j
Resistor Voltage .2
Here ™ L

Here

Copyright 2010 by Pearson Education

Private fields

A field that cannot be accessed from outside the class

private type name;
* Examples:
private int id;

private String namne;
» Client code won't compile if it accesses private fields:

PointMain.java:11: x has private access in Point
System.out.printin(p1.x);
N

Copyright 2010 by Pearson Education

Accessmg private state

/I A "read-only" access to the x field ("accessor")
public int getX() {
return x;

}

/I Allows clients to change the x field ("mutator")
public void setX(int newX) {

X = newx;
}

o Client code will look more like this:

System out. println(pl.getX());
pl.setX(14);

Copyright 2010 by Pearson Education

Pomt class version 4

/I A Point object represents an (x, y) location.
public class Point {

private int x;

private inty;

public Point (i
initi
initi

initialX int initialyY) {

int
al X;
aly;

X
y:
}

public int getX() {
return x;

public int getY() {
returny;

publ i c doubl e di stanceFronOri gi n() {
return Math.sqrt(x * x +y * y);

public void setlLocation(int newX, int newy) {
X new;
y newy;

}

public void translate(int dx int dy) {
setLocation(x + dx, y + dy);

Copyright 2010 by Pearson Education

Aéenefits of enca psu lation

Abstraction between object and clients

Protects object from unwanted access
o Example: Can't fraudulently increase an Account 's balance.

Can change the class implementation later
o Example: Poi nt could be rewritten in polar
coordinates (r, 8) with the same methods.

Can constrain objects' state (invariants)
o Example: Only allow Account s with non-negative balance.
o Example: Only allow Dat es with a month from 1-12.

Copyright 2010 by Pearson Education

The keyword t hi s

reading: 8.3

Copyright 2010 by Pearson Education

~ Thethis keyword

e this : Refers to the implicit parameter inside your class.
(a variable that stores the object on which a method is called)

» Refer to a field: this. field
e Call a method: t hi s. method(parameters) ;
e One constructor t hi s(parameters) ;

can call another:

Copyright 2010 by Pearson Education

Variable shadowing
*» shadowing: 2 variables with same name in same scope.
* Normally illegal, except when one variable is a field.

public class Point {
private int x;
private int vy;

/I this is legal
public void setlLocation(int x, int y) {

}

» In most of the class, x and y refer to the fields.
e In setLocation, x and y refer to the method's parameters.

10

Copyright 2010 by Pearson Education

Fixing shadowing
public class Point {

private int x;
private int y;

public void setlLocation(int x, int y) {
this.x = x;
this.,y =vy;

}

e Inside set Locati on,
» To refer to the data field x, saythis.x
» To refer to the parameter x, say x

11

Copyright 2010 by Pearson Education

)'C‘al»iing another constructor

public class Point {
private int x;
private int vy;

public Point() {

this(0, 0); /I calls (x, y) constructor
}
public Point(int x, int y) {

this.x =x;

this.y =vy;
}

}

« Avoids redundancy between constructors
« Only a constructor (not a method) can call another constructor

12

Copyright 2010 by Pearson Education

Homework 8:
Critters

reading: HWS8 assignment spec

Copyright 2010 by Pearson Education

13

* You must implement:

Critters

eat eating food
fight animal fighting
get Col or color to display
get Move movement

toString letter to display

e A simulation world with animal objects with behavior:

Ant
Bird s L
i wo I owe = | e | ———
H ppo . o
Vul ture
Husky (creative)

Copyright 2010 by Pearson Education

14

ACritter subclass

public class name extends Critter {

e extends Critter tells the simulator your class is a critter
* an example of inheritance

e Write some/all 5 methods to give your animals behavior.

15
Copyright 2010 by Pearson Education

‘How the simulator work

* When you press "Go", the simulator enters a loop:
e move each animal once (get Move), in random order
« if the animal has moved onto an occupied square, fi ght!
« if the animal has moved onto food, ask it if it wants to eat

* Key concept: The simulator is in control, NOT your animal.

o Example: get Move can return only one move at a time.
get Move can't use loops to return a sequence of moves.

« It wouldn't be fair to let one animal make many moves in one turn!

» Your animal must keep state (as fields) so that it can make a
single move, and know what moves to make later.

16

Copyright 2010 by Pearson Education

~ Critter exercise: Cougar

e Write a critter class Cougar (the dumbest of all animals):

Method Behavior
constructor | publ i ¢ Cougar ()
eat Always eats.
fight Always pounces.

get Col or | Blue if the Cougar has never fought; red if he has.

get Move Walks west until he finds food; then walks east
until he finds food; then goes west and repeats.

toString |"C'

17
Copyright 2010 by Pearson Education

Ideas for state

* You must not only have the right state, but update that
state properly when relevant actions occur.

* Counting is helpful:
« How many total moves has this animal made?
* How many times has it eaten? Fought?

* Remembering recent actions in fields is helpful:
* Which direction did the animal move last?
« How many times has it moved that way?
» Did the animal eat the last time it was asked?
 How many steps has the animal taken since last eating?
* How many fights has the animal been in since last eating?

18

Copyright 2010 by Pearson Education

Keeping state

e How can a critter move west until it finds food?

ic Direction getMve() {
ani mal has not eaten) ({
LI ection. EAST;

private int moves; /I total moves made by this Critter
public Direction getMve() ({
moves++;
if (moves %4 == 1 || moves %4 == 2) {
return D rection. WEST;
} else {
return D rection. EAST;
}
}
19
Copyright 2010 by Pearson Education

Cougar solution

inport java.awt.*; // for Color

public class Cougar extends Critter {
private bool ean west;
private bool ean fought;

public Cougar() {
west = true;
fought = false;

public bool ean eat () {
west = lwest;
return true;

}

public Attack fight(String opponent) {
fought = true;
return Attack. POUNCE;

20
Copyright 2010 by Pearson Education

Cougar solution

public Col or getColor() {
if (fought) {
return Col or. RED;
} else {
return Col or. BLUE;

}
public Direction getMve() {
if (west) {
return Direction. WEST;
} else {
return Direction. EAST;
}
public String toString() {
return "C';
}

21

Copyright 2010 by Pearson Education

Testing critters

* Focus on one specific critter of one specific type
e Only spawn 1 of each animal, for debugging

* Make sure your fields update properly
e Use pri ntl n statements to see field values

* Look at the behavior one step at a time
e Use "Tick" rather than "Go"

22

Copyright 2010 by Pearson Education

Cl"l tter exercise: n ake

Method Behavior
constructor | publ i ¢ Snake()
eat Never eats
fight always forfeits

get Col or black
get Move 1Ese S = 22Wel i Sendeb s 1 S g W 1S oo B E s
toString |"S"

23

Copyright 2010 by Pearson Education

Determining necessary fields

e Information required to decide what move to make?
e Direction to go in
e Length of current cycle
* Number of moves made in current cycle

* Remembering things you've done in the past:
e anint counter?
¢ a bool ean flag?

24

Copyright 2010 by Pearson Education

Snake solution

import java.aw.*; /I for Color
public class Snake extends Critter {
private int |ength; / # steps in current horizontal cycle
private int step; Il # of cycle's steps already taken
public Snake() {
length = 1;
step = 0;
public Direction getMve() {
st ep++;
if (step > length) { /l cycle was just completed
| engt h++;
step = 0;

return Direction. SOUTH;
} elseif (length %2 == 1) {
return Direction. EAST;
} else {
return Direction. VEEST;

}

public String toString() {
return "S";

Copyright 2010 by Pearson Education

25

