Building Java Programs

Chapter 9
Lecture 9-1: Inheritance

reading: 9.1 - 9.2

gl—- Copyright 2008 by Pearson E ducation

/ W - -
The software crisis

» software engineering: The practice of developing,
designing, documenting, testing large computer programs.

* Large-scale projects face many issues:
» getting many programmers to work together
getting code finished on time
avoiding redundant code
finding and fixing bugs
maintaining, improving, and reusing existing code

» code reuse: The practice of writing program code once
and using it in many contexts.

Copyright 2008 by Pearson Education

Law firm employee analogy

e common rules: hours, vacation, benefits, regulations ...

» all employees attend a common orientation to learn general
company rules

» each employee receives a 20-page manual of common rules

* each subdivision also has specific rules:

» employee receives a smaller (1-3 page) manual of these rules

» smaller manual adds some new rules and also changes some
rules from the large manual

Employee
20-page manual
il

Lawyer Secretary Marketer
2-page manual 1-page manual 3-page manual

|

Legal5ecretary
1-page manual 3

il Copyright 2008 by Pearson Education

-
/

Separating behavior

* Why not just have a 22 page Lawyer manual, a 21-page
Secretary manual, a 23-page Marketer manual, etc.?

* Some advantages of the separate manuals:
 maintenance: Only one update if a common rule changes.
» |locality: Quick discovery of all rules specific to lawyers.

e Some key ideas from this example:
o General rules are useful (the 20-page manual).
» Specific rules that may override general ones are also useful.

£ 4
Copyright 2008 by Pearson Education

Is-a relationships, hierarchies

* Is-a relationship: A hierarchical connection where one
category can be treated as a specialized version of another.

» every marketer is an employee
» every legal secretary is a secretary

* inheritance hierarchy: A set of classes connected by is-a
relationships that can share common code.

¥\.

Copyright 2008 by Pearson Education

——

et
et

Employee regulations

» Consider the following employee regulations:
» Employees work 40 hours / week.

» Employees make $40,000 per year, except legal secretaries who
make $5,000 extra per year ($45,000 total), and marketers who
make $10,000 extra per year ($50,000 total).

« Employees have 2 weeks of paid vacation leave per year, except
lawyers who get an extra week (a total of 3).

» Employees should use a yellow form to apply for leave, except for
lawyers who use a pink form.

* Each type of employee has some unique behavior:
» Lawyers know how to sue.
» Marketers know how to advertise.
» Secretaries know how to take dictation.
» Legal secretaries know how to prepare legal documents.

Copyright 2008 by Pearson Education

//
 —
An Employee class

// A class to represent employees in general (20-page manual).
Sllenmns e e el e e
public int getHours () {
return 40; // works 40 hours / week

}

public double getSalary () {
return 40000.0; // $40,000.00 / year

}

public int getVacationDays () {
e e // 2 weeks' paid vacation

}

OYBR BNV PR b B A G U e A U= Ve U RA B A DM A A 8 A
return iyt ow; // use the yellow form

}

o Exercise: Implement class secretary, based on the previous
employee reqgulations. (Secretaries can take dictation.)

| ey

~ Copyright 2008 by Pearson Education

 —
Redundant Secretary class

// A redundant class to represent secretaries.
on s e
pablRe e RO e SR
return 40; // works 40 hours / week

}

public double getSalary () {
return 40000.0; // $40,000.00 / year

}

public int getVacationDays () {
e e // 2 weeks' paid vacation

}

OYBR BNV PR b B A G U e A U= Ve U RA B A DM A A 8 A
return iyt ow; // use the yellow form

}

public void takeDictation(String text) ({
System.out.println ("Taking dictation of text: " + text);

}

7

~ Copyright 2008 by Pearson Education

//

—

Desire for code-sharing

* takeDictation is the only unique behavior in Secretary.

» We'd like to be able to say:

// A class to represent secretaries.
e e e e e e
copy all the contents from the Employee class;

public void takeDictation (String text) {
A e e S S A A A AN A A N e e o B O S M G R AT @ i s A S e S Y

}

~ Copyright 2008 by Pearson Education

Inheritance

* inheritance: A way to form new classes based on existing
classes, taking on their attributes/behavior.

* a way to group related classes
» a way to share code between two or more classes

* One class can extend another, absorbing its data/behavior.
» superclass: The parent class that is being extended.

» subclass: The child class that extends the superclass and
inherits its behavior.

« Subclass gets a copy of every field and method from superclass

S 10
Copyright 2008 by Pearson Education

//

/ .
Inheritance syntax

public class name extends superclass {

 Example:

public class Secretary extends Employee ({

* By extending Employee, each Secretary object now:

* receives a getHours, getSalary, getVacationDays, and
getVacationForm method automatically

e can be treated as an Employee by client code (seen later)

— 13
Copyright 2008 by Pearson Education

 —
Improved Secretary code

// A class to represent secretaries.
public class Secretary extends Employee ({
oyol oM eiiaV ot o Rt e U d IR nr Yk wl otk petied s e le Rt e Sk el IRAn
Sy gbremyonbyprinsintEaikamgrdi e atreriveiEcse e e

}

* Now we only write the parts unique to each type.

» Secretary inherits getHours, getSalary, getVacationDays,
and getvVacationForm methods from Employee.

*» Secretary adds the takeDictation method.

= 12
I8 Copyright 2008 by Pearson Education

/ m
Implementing Lawyer

* Consider the following lawyer regulations:
» Lawyers who get an extra week of paid vacation (a total of 3).
» Lawyers use a pink form when applying for vacation leave.
» Lawyers have some unique behavior: they know how to sue.

* Problem: We want lawyers to inherit most behavior from
employee, but we want to replace parts with new behavior.

S 13
' Copyright 2008 by Pearson Education

//

 —
Overriding methods

e override: To write a new version of a method in a subclass
that replaces the superclass's version.

» No special syntax required to override a superclass method.
Just write a new version of it in the subclass.

public class Lawyer extends Employee {
// overrides getVacationForm method in Employee class
public String getVacationForm() ({
return "pink";

}

» Exercise: Complete the Lawyer class.
« (3 weeks vacation, pink vacation form, can sue)

— 14
G Copyright 2008 by Pearson Education

 —
Lawyer class

// A class to represent lawyers.
SIoh e e e B s e e e e s B
// overrides getVacationForm from Employee class
public String getVacationForm() {
N O

}

// overrides getVacationDays from Employee class
public int getVacationDays () {

rerUrm TSy // 3 weeks vacation
}
pubilrersraddiramentyiig
Sygremyontyprintin bbbl eeesvoirean e o e b

}

» Exercise: Complete the Marketer class. Marketers make
$10,000 extra ($50,000 total) and know how to advertise.

_ Copyright 2008 by Pearson Education

e

Marketer class

// A class to represent marketers.
T e e e e R e e e e e
public void advertise() {
System.out.println ("Act now while supplies last!");

}

public double getSalary () {
= A R s e S8 DY A // $50,000.00 / year

}

.
e 16
" Copyright 2008 by Pearson Education

//

 —
Levels of inheritance

e Multiple levels of inheritance in a hierarchy are allowed.

« Example: A legal secretary is the same as a regular secretary
but makes more money ($45,000) and can file legal briefs.

public class LegalSecretary extends Secretary {

» Exercise: Complete the L.egalSecretary class.

e 17
: Copyright 2008 by Pearson Education

R BB B B e IR, e

m—
LegalSecretary class

// A class to represent legal secretaries.
N B e e e e e e e R e e e
public void filelegalBriefs () {
SAvAshetsiio b nuid o namiay wA Mo (AR o o 6 M Mo Mt ma A i < W= WA Dive o vl s

}

public double getSalary () {
= A R s e A8 DY A A // $45,000.00 / year

}

18

" Copyright 2008 by Pearson Education

Building Java Programs

Chapter 9
Lecture 9-3: Polymorphism

reading: 9.2
self-check: #5-9

~ Copyright 2008 by Pearson Education

Polymorphism

 polymorphism: Ability for the same code to be used with
different types of objects and behave differently with each.

» System.out.println can print any type of object.
« Each one displays in its own way on the console.

e CritterMain can interact with any type of critter.
« Each one moves, etc. in its own way.

— 20
Copyright 2008 by Pearson Education

//

—

Coding with polymorphism
* A variable of type T can hold an object of any subclass of T.

Employee ed = new Lawyer();

* You can call any methods from Employee on ed.
* You can not call any methods specific to Lawyer (e.g. sue).

* When a method is called on ed, it behaves as a Lawyer.

System.out.println (ed.getSalary()) ; // 50000.0
System.out.println (ed.getVacationForm()) ; // pink

S 23:
G Copyright 2008 by Pearson Education

//

’<;’;;’gﬁ—————’—~*————* .
Polymorphism and parameters

* You can pass any subtype of a parameter's type.

public class EmployeeMain {

public static void main(String[] args) {
Lawyer lisa = new Lawyer();
Secretary steve = new Secretary():;

printInfo(lisa);
printInfo (steve) ; *
} -

public static void printInfo (Employee empl) ({

R Ve K g e S T e - Vo e o) s e B e

System.out.println("days = " + empl.getVacationDays());

s hml =1 AN ol TAR o T it aed 9 0 8 S B9 D R g (AL Ay s Nagh o A o f SV H o = Mt o rR i @ R gy 4 A A
(

A b e N R AR G N

}

OUTPUT:

salary = 50000.0 salary = 50000.0
vacation days = 21 vacation days = 10
vacation form = pink vacation form = yellow

22
Copyright 2008 by Pearson Education

//

’fjjgﬁggg———_—’ﬂ————ww .
Polymorphism and arrays

e Arrays of superclass types can store any subtype as elements.

public class EmployveeMainz {
pub iyt at e vatd matn i SEring i arasy
Employee[] e = { new Lawyer(), new Secretary(),
new Marketer (), new LegalSecretary() 1}

for (int 1 = 0; 1 < e.length; i++) {
Dl cn aE mninin I o 0 E el] detSalar v
System.out.println("v.days: " + e[i].getVacationDays())
System.out.println () ;

}

Output:

Salaryrrer s a0
WYATS oy

S laryv 0000
v.days: 10
salary: 60000.0
R
Sdlat e N0
v.days: 10

23
Copyright 2008 by Pearson Education

//

Polymorphism problems

» 4-5 classes with inheritance relationships are shown.
* A client program calls methods on objects of each class.

* You must read the code and determine the client's output.

* We always place such a question on our final exams!

= 24
: Copyright 2008 by Pearson Education

//

 —
A polymorphism problem

* Assume that the following four classes have been declared:

pubrevelass oo
publrarvondimetioalaty
sSystemioubtiprintin Yoo dNys

}

S e S R S e R A
et e e e e e B I S e e R
}

pabliaySbring oS trvngi)id
et urn S Eo6
}
}

public class Bar extends Foo {
bl verdane oz by
SRV RO E Y e Y i e S B o T e A

}

s Copyright 2008 by Pearson Education

T
 —
A polymorphism problem

public class Baz extends Foo {
SN R e O e DR e e s R e
Systenvontyprantlntitbar s

}

pub e St iRt oSt rihgtyig
return "baz";

}
}

public class Mumble extends Baz {

R R e S T s A S
Sy Sremcontrprinelneimumbler 2Ny

}
}

» What would be the output of the following client code?

Foo[] elements = {new Foo (), new Bar (), new Baz (), new Mumble() };
for (int 1 = 0; 1 < elements.length; 1i++) {

System.out.println (elements[i]) ;

elements[i] .methodl () ;

elements[i] .method2 () ;

System.out.println();

Copyright 2008 by Pearson Education

T oo

——

e Include all inherited methods.

Foo
rmethiod fon 1
method2 fon 2
toString foo
Bar Baz
(methoc 1) foo 1 method1
rrethod har 2 (rmethad2)
(tostring fon toString
Mumble
(methoc)
method2
(tostring)

_ Copyright 2008 by Pearson Education

Diagramming the classes

* Add classes from top (superclass) to bottom (subclass).

haz 1
foo 2
haz

haz 1
mumbhble 2
haz

S

—

Finding output with tables

method Foo Bar Baz Mumble
methodl e | Ttk ez baz 1
method? NS R bar 2 e mumble 2

ToStEangshtee e baz baz

— 28
Copyright 2008 by Pearson Education

e

 —
Polymorphism answer

Foo[] elements={new Foo (), new Bar (), new Baz (), new Mumble() };
i o e e T e e e
System.out.println(elements[i]);
elements([i] .methodl () ;
elements([i] .method?2 () ;
sSvsbemyonbiyperntTnil)s;

)
e Qutput:

foo
e
foo 2

foo
o0
bar

N

baz
baz il
foo 2

baz
barzl
mumble 2

— 29
Copyright 2008 by Pearson Education

