Building Java Programs

Chapter 2
Lecture 2-1: Expressions and Variables
reading: 2.1-2.2

Data and expressions

reading: 2.1

Data types

- Internally, computers store everything as 1 s and $0 s$

```
104 -> 01101000
"hi" -> 0110100001101001
h }\quad->0110100
```

- How are h and 104 differentiated?
- type: A category or set of data values.
- Constrains the operations that can be performed on data
- Many languages ask the programmer to specify types
- Examples: integer, real number, string

Java's primitive types

- primitive types: 8 simple types for numbers, text, etc.
- Java also has object types, which we'll talk about later

Name
int
double
char
boolean

Examples

$42,-3,0,926394$
$3.1,-0.25,9.4 e 3$
'a', 'X', '?', '\n'
true, false
true, false

- Why does Java distinguish integers vs. real numbers?

Integer or real number?

- Which category is more appropriate?

integer (int)	real number (double)

1. Temperature in degrees Celsius
2. The population of lemmings
3. Your grade point average
4. A person's age in years
5. A person's weight in pounds
6. A person's height in meters
7. Number of miles traveled
8. Number of dry days in the past month
9. Your locker number
10. Number of seconds left in a game
11. The sum of a group of integers
12. The average of a group of integers

- credit: Kate Deibel, http://www.cs.washington.edu/homes/deibel/CATs/

Expressions

- expression: A value or operation that computes a value.
- Examples:

```
1 + 4 * 5
    (7 + 2) * 6 / 3
    4 2
```

- The simplest expression is a literal value.
- A complex expression can use operators and parentheses.

Arithmetic operators

- operator: Combines multiple values or expressions.
+ addition
- subtraction (or negation)
* multiplication
/ division
\% modulus (a.k.a. remainder)
- As a program runs, its expressions are evaluated.
- $1+1$ evaluates to 2
- System.out.println(3 * 4); prints 12
- How would we print the text 3 * 4 ?

Integer division with /

- When we divide integers, the quotient is also an integer.
- 14 / 4 is 3 , not 3.5

$\frac{54}{21}$
- More examples:
- 32 / 5
is 6
- $84 / 10$ is 8
- 156 / 100 is 1
- Dividing by 0 causes an error when your program runs.

Integer remainder with \%

- The \% operator computes the remainder from integer division.

$14 \% 4$ is							
- 218 \% 5			is	3			
							43
4)	14				$5)$) 218
		12					20
		2					18
							$\underline{15}$

```
What is the result?
45 % 6
2% 2
8 % 20
11% 0
```

- Applications of \% operator:
- Obtain last digit of a number: 230857 \% 10 is 7
- Obtain last 4 digits:

658236489 \% 10000 is 6489

- See whether a number is odd: $7 \% 2$ is $1,42 \% 2$ is 0

Precedence

- precedence: Order in which operators are evaluated.
- Generally operators evaluate left-to-right.

$$
1-2-3 \text { is }(1-2)-3 \text { which is }-4
$$

- But * / \% have a higher level of precedence than + -

```
1 + 3 * 4
    is }1
6+8 / 2 * 3
6+ 12 is 18
```

- Parentheses can force a certain order of evaluation:
(1 + 3) * 4
is 16
- Spacing does not affect order of evaluation
1+3 * 4-2
is 11

Precedence examples

Precedence questions

- What values result from the following expressions?
- 9 / 5
- 695 \% 20
- 7 + 6 * 5
- 7 * 6 + 5
- 248 \% 100 / 5
- 6 * 3 - 9 / 4
- (5-7) * 4
- $6+(18$ \% (17-12))

Real numbers (type double)

- Examples: 6.022, -42.0 , 2.143 e 17
- Placing . 0 or . after an integer makes it a double.
- The operators $+-* / \%()$ all still work with double.
- / produces an exact answer: 15.0 / 2.0 is 7.5
- Precedence is the same: () before */\% before + -

Real number example

Mixing types

- When int and double are mixed, the result is a double.
- 4.2 * 3 is 12.6
- The conversion is per-operator, affecting only its operands.

String concatenation

- string concatenation: Using + between a string and another value to make a longer string.

```
"hello" + 42 is "hello42"
1 + "abc" + 2 is "1abc2"
"abc" + 1 + 2 is "abc12"
1 + 2 + "abc" is "3abc"
"abc" + 9 * 3 is "abc27"
"1" + 1 is "11"
4 - 1 + "abc" is "3abc"
```

- Use + to print a string and an expression's value together.
- System.out.println("Grade: " + (95.1 + 71.9) / 2);
- Output: Grade: 83.5

Variables

reading: 2.2

Receipt example

What's bad about the following code?

```
public class Receipt {
    public static void main(String[] args) {
    // Calculate total owed, assuming 8% tax / 15% tip
    System.out.println("Subtotal:");
    System.out.println(38 + 40 + 30);
    System.out.println("Tax:");
    System.out.println((38 + 40 + 30) * .08);
    System.out.println("Tip:");
    System.out.println((38 + 40 + 30) * .15);
    System.out.println("Total:");
    System.out.println(38 + 40 + 30 +
        (38+40+30)*.08+
    }
}
```

- The subtotal expression $(38+40+30)$ is repeated
- So many println statements

Variables

- variable: A piece of the computer's memory that is given a name and type, and can store a value.
- Like preset stations on a car stereo, or cell phone speed dial:

- Steps for using a variable:
- Declare it - state its name and type
- Initialize it - store a value into it
- Use it - print it or use it as part of an expression

Declaration

- variable declaration: Sets aside memory for storing a value.
- Variables must be declared before they can be used.
- Syntax:

type name;

- The name is an identifier.
- int zipcode;

```
zipcode
```

```
myGPA
```


Assignment

- assignment: Stores a value into a variable.
- The value can be an expression; the variable stores its result.
- Syntax:
name $=$ expression;
- int zipcode;
zipcode $=90210$;

- double myGPA; myGPA $=1.0+2.25$;

Using variables

- Once given a value, a variable can be used in expressions:

```
int x;
x = 3;
System.out.println("x is " + x); // x is 3
System.out.println(5* * - 1); // 5* 3-1
```

- You can assign a value more than once:

```
int x;
x = 3;
System.out.println(x + " here");
// 3 here
x = 4 + 7;
System.out.println("now x is " + x); // now x is 11
```


Declaration/initialization

- A variable can be declared/initialized in one statement.
- Syntax: type name = value;
- double myGPA = 3.95;

- int $x=(11 \% 3)+12$;

Assignment and algebra

- Assignment uses =, but it is not an algebraic equation.
- = means, "store the value at right in variable at left"
- The right side expression is evaluated first, and then its result is stored in the variable at left.
- What happens here?

```
int x = 3;
x = x + 2; // ???
```


Assignment and types

- A variable can only store a value of its own type.
- int $x=2.5 ; ~ / / E R R O R: ~ i n c o m p a t i b l e ~ t y p e s ~$
- An int value can be stored in a double variable.
- The value is converted into the equivalent real number.
- double myGPA $=4$;
- double avg = 11 / 2;
- Why does avg store 5.0
 and not 5.5 ?

Compiler errors

- A variable can't be used until it is assigned a value.
- int x;

System.out.println(x); // ERROR: x has no value

- You may not declare the same variable twice.
- int x; int x;
- int $x=3 ;$ int $x=5$;
- How can this code be fixed?
// ERROR: x already exists
// ERROR: x already exists

Printing a variable's value

- Use + to print a string and a variable's value on one line.
- double grade $=(95.1+71.9+82.6) / 3.0$; System.out.println("Your grade was " + grade);
int students $=11+17+4+19+14 ;$
System.out.println("There are " + students + " students in the course.");
- Output:

Your grade was 83.2
There are 65 students in the course.

Receipt question

Improve the receipt program using variables.

```
public class Receipt {
    public static void main(String[] args) {
        // Calculate total owed, assuming 8% tax / 15% tip
        System.out.println("Subtotal:");
        System.out.println(38 + 40 + 30);
        System.out.println("Tax:");
        System.out.println((38 + 40 + 30) * .08);
    System.out.println("Tip:");
    System.out.println((38 + 40 + 30) * .15);
    System.out.println("Total:");
    System.out.println(38 + 40 + 30 +
        (38 + 40 + 30) * . 15 +
        (38 + 40 + 30) * .08);
    }
}
```


Receipt answer

```
public class Receipt {
    public static void main(String[] args)
        // Calculate total owed, assuming 8% tax / 15% tip
        int subtotal = 38 + 40 + 30;
        double tax = subtotal * .08;
        double tip = subtotal * . 15;
        double total = subtotal + tax + tip;
        System.out.println("Subtotal: " + subtotal);
        System.out.println("Tax: " + tax);
        System.out.println("Tip: " + tip);
        System.out.println("Total: " + total);
    }
}
```

