
Copyright 2010 by Pearson Education

Building Java Programs

Chapter 7
Lecture 7-3: Arrays for Tallying; Text Processing

reading: 4.3, 7.6

Copyright 2010 by Pearson Education
2

Copyright 2010 by Pearson Education
3

Value/Reference Semantics
�  Variables of primitive types store values directly:

�  Values are copied from one variable to another:
 cats = age;

�  Variables of object types store references to memory:

�  References are copied from one variable to another:
 scores = grades;

index 0 1 2

value 89 78 93

age 20 cats 3

age 20 cats 20

grades

scores

Copyright 2010 by Pearson Education

Text processing

reading: 7.2, 4.3

Copyright 2010 by Pearson Education
5

String traversals
�  The chars in a String can be accessed using the charAt method.

�  accepts an int index parameter and returns the char at that index

 String food = "cookie";
 char firstLetter = food.charAt(0); // 'c'

 System.out.println(firstLetter + " is for " + food);

�  You can use a for loop to print or examine each character.

 String major = "CSE";
 for (int i = 0; i < major.length(); i++) { // output:
 char c = major.charAt(i); // C
 System.out.println(c); // S
 } // E

Copyright 2010 by Pearson Education
6

A multi-counter problem
�  Problem: Write a method mostFrequentDigit that returns

the digit value that occurs most frequently in a number.

�  Example: The number 669260267 contains:
 one 0, two 2s, four 6es, one 7, and one 9.

 mostFrequentDigit(669260267) returns 6.

�  If there is a tie, return the digit with the lower value.
 mostFrequentDigit(57135203) returns 3.

Copyright 2010 by Pearson Education
7

A multi-counter problem
�  We could declare 10 counter variables ...

 int counter0, counter1, counter2, counter3, counter4,

 counter5, counter6, counter7, counter8, counter9;

�  But a better solution is to use an array of size 10.
�  The element at index i will store the counter for digit value i.
�  Example for 669260267:

�  How do we build such an array? And how does it help?

index 0 1 2 3 4 5 6 7 8 9

value 1 0 2 0 0 0 4 1 0 0

Copyright 2010 by Pearson Education
8

Creating an array of tallies

 // assume n = 669260267
 int[] counts = new int[10];
 while (n > 0) {
 // pluck off a digit and add to proper counter
 int digit = n % 10;
 counts[digit]++;
 n = n / 10;
 }

index 0 1 2 3 4 5 6 7 8 9

value 1 0 2 0 0 0 4 1 0 0

Copyright 2010 by Pearson Education
9

Tally solution
// Returns the digit value that occurs most frequently in n.
// Breaks ties by choosing the smaller value.
public static int mostFrequentDigit(int n) {
 int[] counts = new int[10];
 while (n > 0) {
 int digit = n % 10; // pluck off a digit and tally it
 counts[digit]++;
 n = n / 10;
 }

 // find the most frequently occurring digit
 int bestIndex = 0;
 for (int i = 1; i < counts.length; i++) {
 if (counts[i] > counts[bestIndex]) {
 bestIndex = i;
 }
 }

 return bestIndex;
}

Copyright 2010 by Pearson Education
10

Section attendance question
�  Read a file of section attendance (see next slide):

yynyyynayayynyyyayanyyyaynayyayyanayyyanyayna
ayyanyyyyayanaayyanayyyananayayaynyayayynynya
yyayaynyyayyanynnyyyayyanayaynannnyyayyayayny

�  And produce the following output:

Section 1
Student points: [20, 16, 17, 14, 11]
Student grades: [100.0, 80.0, 85.0, 70.0, 55.0]

Section 2
Student points: [16, 19, 14, 14, 8]
Student grades: [80.0, 95.0, 70.0, 70.0, 40.0]

Section 3
Student points: [16, 15, 16, 18, 14]
Student grades: [80.0, 75.0, 80.0, 90.0, 70.0]

•  Students earn 3 points for each section attended up to 20.

Copyright 2010 by Pearson Education
11

�  Each line represents a section.
�  A line consists of 9 weeks' worth of data.

�  Each week has 5 characters because there are 5 students.
�  Within each week, each character represents one student.

�  a means the student was absent (+0 points)
�  n means they attended but didn't do the problems (+1 points)
�  y means they attended and did the problems (+3 points)

Section input file

yynyyynayayynyyyayanyyyaynayyayyanayyyanyayna

ayyanyyyyayanaayyanayyyananayayaynyayayynynya
yyayaynyyayyanynnyyyayyanayaynannnyyayyayayny

week 1 2 3 4 5 6 7 8 9

student 123451234512345123451234512345123451234512345

section 1
section 2
section 3

Copyright 2010 by Pearson Education
12

Section attendance answer
import java.io.*;
import java.util.*;

public class Sections {
 public static void main(String[] args) throws FileNotFoundException {
 Scanner input = new Scanner(new File("sections.txt"));
 int section = 1;
 while (input.hasNextLine()) {
 String line = input.nextLine(); // process one section
 int[] points = new int[5];
 for (int i = 0; i < line.length(); i++) {
 int student = i % 5;
 int earned = 0;
 if (line.charAt(i) == 'y') { // c == 'y' or 'n' or 'a'
 earned = 3;
 } else if (line.charAt(i) == 'n') {
 earned = 1;
 }
 points[student] = Math.min(20, points[student] + earned);
 }

 double[] grades = new double[5];
 for (int i = 0; i < points.length; i++) {
 grades[i] = 100.0 * points[i] / 20.0;
 }

 System.out.println("Section " + section);
 System.out.println("Student points: " + Arrays.toString(points));
 System.out.println("Student grades: " + Arrays.toString(grades));
 System.out.println();
 section++;
 }
 }
}

Copyright 2010 by Pearson Education
13

Data transformations
�  In many problems we transform data between forms.

�  Example: digits → count of each digit → most frequent digit
�  Often each transformation is computed/stored as an array.
�  For structure, a transformation is often put in its own method.

�  Sometimes we map between data and array indexes.

�  by position (store the i th value we read at index i)
�  tally (if input value is i, store it at array index i)
�  explicit mapping (count 'J' at index 0, count 'X' at index 1)

�  Exercise: Modify our Sections program to use static
methods that use arrays as parameters and returns.

Copyright 2010 by Pearson Education
14

Array param/return answer
// This program reads a file representing which students attended
// which discussion sections and produces output of the students'
// section attendance and scores.

import java.io.*;
import java.util.*;

public class Sections2 {
 public static void main(String[] args) throws FileNotFoundException {
 Scanner input = new Scanner(new File("sections.txt"));
 int section = 1;
 while (input.hasNextLine()) {
 // process one section
 String line = input.nextLine();
 int[] points = countPoints(line);
 double[] grades = computeGrades(points);
 results(section, points, grades);
 section++;
 }
 }

 // Produces all output about a particular section.
 public static void results(int section, int[] points, double[] grades) {
 System.out.println("Section " + section);
 System.out.println("Student scores: " + Arrays.toString(points));
 System.out.println("Student grades: " + Arrays.toString(grades));
 System.out.println();
 }

 ...

Copyright 2010 by Pearson Education
15

Array param/return answer
 ...

 // Computes the points earned for each student for a particular section.
 public static int[] countPoints(String line) {
 int[] points = new int[5];
 for (int i = 0; i < line.length(); i++) {
 int student = i % 5;
 int earned = 0;
 if (line.charAt(i) == 'y') { // c == 'y' or c == 'n'
 earned = 3;
 } else if (line.charAt(i) == 'n') {
 earned = 2;
 }
 points[student] = Math.min(20, points[student] + earned);
 }
 return points;
 }

 // Computes the percentage for each student for a particular section.
 public static double[] computeGrades(int[] points) {
 double[] grades = new double[5];
 for (int i = 0; i < points.length; i++) {
 grades[i] = 100.0 * points[i] / 20.0;
 }
 return grades;
 }
}

