
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 8
Lecture 8-3: Encapsulation, this

reading: 8.5 - 8.6
self-checks: #13-17

exercises: #5

Copyright 2008 by Pearson Education
2

Abstraction

Don't need
to know
this

Can focus
on this!!

Copyright 2008 by Pearson Education
3

Encapsulation
�  encapsulation: Hiding implementation details of an

object from its clients.

�  Encapsulation provides abstraction.
�  separates external view (behavior) from internal view (state)

�  Encapsulation protects the integrity of an object's data.

Copyright 2008 by Pearson Education
4

Private fields
�  A field can be declared private.

�  No code outside the class can access or change it.

 private type name;

�  Examples:

 private int id;
 private String name;

�  Client code sees an error when accessing private fields:
PointMain.java:11: x has private access in Point
System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");
 ^

Copyright 2008 by Pearson Education
5

Accessing private state
�  We can provide methods to get and/or set a field's value:

 // A "read-only" access to the x field ("accessor")
 public int getX() {
 return x;
 }

 // Allows clients to change the x field ("mutator")
 public void setX(int newX) {
 x = newX;
 }

�  Client code will look more like this:

 System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");
 p1.setX(14);

Copyright 2008 by Pearson Education
6

Point class, version 4
// A Point object represents an (x, y) location.
public class Point {
 private int x;
 private int y;

 public Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
 }

 public double distanceFromOrigin() {
 return Math.sqrt(x * x + y * y);
 }

 public int getX() {
 return x;
 }

 public int getY() {
 return y;
 }

 public void setLocation(int newX, int newY) {
 x = newX;
 y = newY;
 }

 public void translate(int dx, int dy) {
 x = x + dx;
 y = y + dy;
 }
}

Copyright 2008 by Pearson Education
7

Client code, version 4
public class PointMain4 {
 public static void main(String[] args) {
 // create two Point objects
 Point p1 = new Point(5, 2);
 Point p2 = new Point(4, 3);

 // print each point
 System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");
 System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");

 // move p2 and then print it again
 p2.translate(2, 4);
 System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");
 }
}

OUTPUT:
p1 is (5, 2)
p2 is (4, 3)
p2 is (6, 7)

Copyright 2008 by Pearson Education
8

Benefits of encapsulation
�  Provides abstraction between an object and its clients.

�  Protects an object from unwanted access by clients.
�  A bank app forbids a client to change an Account's balance.

�  Allows you to change the class implementation.
�  Point could be rewritten to use polar coordinates

(radius r, angle θ), but with the same methods.

�  Allows you to constrain objects' state (invariants).
�  Example: Only allow Points with non-negative coordinates.

Copyright 2008 by Pearson Education
9

The keyword this

reading: 8.7

Copyright 2008 by Pearson Education
10

this
�  this : A reference to the implicit parameter.

�  implicit parameter: object on which a method is called

�  Syntax for using this:

�  To refer to a field:
 this.field

�  To call a method:
 this.method(parameters);

�  To call a constructor from another constructor:
 this(parameters);

Copyright 2008 by Pearson Education
11

Variable names and scope
�  Usually it is illegal to have two variables in the same scope

with the same name.

 public class Point {
 int x;
 int y;
 ...

 public void setLocation(int newX, int newY) {
 x = newX;
 y = newY;
 }
 }

�  The parameters to setLocation are named newX and newY to
be distinct from the object's fields x and y.

Copyright 2008 by Pearson Education
12

Variable shadowing
�  An instance method parameter can have the same name as

one of the object's fields:

 // this is legal
 public void setLocation(int x, int y) {
 ...
 }

�  Fields x and y are shadowed by parameters with same names.
�  Any setLocation code that refers to x or y will use the

parameter, not the field.

Copyright 2008 by Pearson Education
13

Avoiding shadowing w/ this
 public class Point {
 private int x;
 private int y;

 ...

 public void setLocation(int x, int y) {
 this.x = x;
 this.y = y;
 }
 }

�  Inside the setLocation method,
�  When this.x is seen, the field x is used.
�  When x is seen, the parameter x is used.

Copyright 2008 by Pearson Education
14

Multiple constructors
�  It is legal to have more than one constructor in a class.

�  The constructors must accept different parameters.

 public class Point {
 private int x;
 private int y;

 public Point() {
 x = 0;
 y = 0;
 }

 public Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
 }

 ...
 }

Copyright 2008 by Pearson Education
15

Constructors and this
�  One constructor can call another using this:

 public class Point {
 private int x;
 private int y;

 public Point() {
 this(0, 0); // calls the (x, y) constructor
 }

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 ...
 }

