CSE 142

Sample Final Exam \#1

1. Array Mystery

Consider the following method:

```
public static void arrayMystery(int[] a) {
    for (int i = 1; i < a.length; i++) {
        a[i] = i + a[i - 1] - a[i];
    }
}
```

Indicate in the right-hand column what values would be stored in the array after the method arrayMystery executes if the integer array in the left-hand column is passed as a parameter to it.

Original Contents of Array

```
int[] a1 = {7};
arrayMystery(a1);
int[] a2 = {4, 3, 6};
arrayMystery(a2);
int[] a3 = {7, 4, 8, 6, 2};
arrayMystery(a3);
int[] a4 = {10, 2, 5, 10};
arrayMystery(a4);
int[] a5 = {2, 4, -1, 6, -2, 8};
arrayMystery(a5);
```


2. Reference Semantics Mystery

The following program produces 4 lines of output. Write the output below, as it would appear on the console.

```
public class BasicPoint {
    int x;
    int y;
    public BasicPoint() {
        x = 2;
        y = 2;
    }
}
public class ReferenceMystery {
    public static void main(String[] args) {
        int a = 7;
        int b = 9;
        BasicPoint p1 = new BasicPoint();
        BasicPoint p2 = new BasicPoint();
        addToXTwice(a, p1);
        System.out.println(a + " " + b + " " + p1.x + " " + p2.x);
        addToXTwice(b, p2);
        System.out.println(a + " " + b + " " + p1.x + " " + p2.x);
    }
    public static void addToXTwice(int a, BasicPoint p1) {
        a = a + a;
        p1.x = a;
        System.out.println(a + " " + p1.x);
    }
}
```


3. Inheritance Mystery

Assume that the following classes have been defined:

```
public class A extends B {
    public void method2() {
        System.out.print("a 2 ");
        method1();
    }
}
public class B extends C {
    public String toString() {
        return "b";
    }
    public void method2() {
        System.out.print("b 2 ");
        super.method2();
    }
}
```

```
```

```
public class C {
```

```
```

public class C {

```
```

```
public class C {
    public String toString() {
    public String toString() {
    public String toString() {
        return "c";
        return "c";
        return "c";
    }
    }
    }
    public void methodl() {
    public void methodl() {
    public void methodl() {
        System.out.print("c 1 ");
        System.out.print("c 1 ");
        System.out.print("c 1 ");
    }
    }
    }
    public void method2() {
    public void method2() {
    public void method2() {
        System.out.print("c 2 ");
        System.out.print("c 2 ");
        System.out.print("c 2 ");
    }
    }
    }
}
}
}
public class D extends B {
public class D extends B {
public class D extends B {
    public void method1() {
    public void method1() {
    public void method1() {
        System.out.print("d 1 ");
        System.out.print("d 1 ");
        System.out.print("d 1 ");
        method2();
        method2();
        method2();
    }
    }
    }
}
```

```
```

}

```
```

```
}
```

```
```

Given the classes above, what output is produced by the following code?

```
C[] elements = {new A(), new B(), new C(), new D()};
for (int i = 0; i < elements.length; i++) {
    System.out.println(elements[i]);
    elements[i].method1();
    System.out.println();
    elements[i].method2();
    System.out.println();
    System.out.println();
}
```


4. File Processing

Write a static method named printStrings that takes as a parameter a Scanner holding a sequence of integer/string pairs and that prints to System.out one line of output for each pair with the given String repeated the given number of times. For example if the Scanner contains the following data:

```
6 fun. 3 hello 10 <> 2 25 4 wow!
```

your method should produce the following output:

```
fun.fun.fun.fun.fun.fun.
hellohellohello
<><><><><><>><><><><>
2525
wow!wow!wow!wow!
```

Notice that there is one line of output for each integer/string pair. The first line has 6 occurrences of "fun.", the second line has 3 occurrences of "hello", the third line has 10 occurrences of "<>", the fourth line has 2 occurrences of " 25 " the fifth line has 4 occurrences of "wow! ". Notice that there are no extra spaces included in the output. You are to exactly reproduce the format of this sample output. You may assume that the input values always come in pairs with an integer followed by a String (which itself could be numeric, such as " 25 " above). If the Scanner is empty (no integer/string pairs), your method should produce no output.

5. File Processing

Write a static method named reverseLines that accepts a Scanner containing an input file as a parameter and that echoes the input file to System. out with each line of text reversed. For example, given the following input file:

```
If this method works properly,
the lines of text in this file
will be reversed.
Remember that some lines might be blank.
```

Your method should print the following output:

```
,ylreporp skrow dohtem siht fI
elif siht ni txet fo senil eht
.desrever eb lliw
.knalb eb thgim senil emos taht rebmemeR
```

Notice that some of the input lines can be blank lines.

6. Array Programming

Write a static method isAlleven that takes an array of integers as a parameter and that returns a boolean value indicating whether or not all of the values are even numbers (true for yes, false for no). For example, if a variable called list stores the following values:
int[] list $=\{18,0,4,204,8,4,2,18,206,1492,42\}$;
Then the call of isAllEven(list) should return true because each of these integers is an even number. If instead the list had stored these values:
int[] list $=\{2,4,6,8,10,208,16,7,92,14\}$;
Then the call should return false because, although most of these values are even, the value 7 is an odd number.

7. Array Programming

Write a static method named isunique that takes an array of integers as a parameter and that returns a boolean value indicating whether or not the values in the array are unique (true for yes, false for no). The values in the list are considered unique if there is no pair of values that are equal. For example, if a variable called list stores the following values:
int[] list $=\{3,8,12,2,9,17,43,-8,46,203,14,97,10,4\}$;
Then the call of isunique(list) should return true because there are no duplicated values in this list. If instead the list stored these values:
int[] list $=\{4,7,2,3,9,12,-47,-19,308,3,74\}$;
Then the call should return false because the value 3 appears twice in this list. Notice that given this definition, a list of 0 or 1 elements would be considered unique.

8. Critters

Write a class called Pigeon that extends the Critter class. The instances of the Pigeon class always hop when possible and otherwise randomly choose between turning left and turning right, with each choice being equally likely. Their appearance changes over time. Each Pigeon initially displays as an asterisk ("*"). Then as each Pigeon chooses a move, it changes its appearance to match that move. If it's most recent move was a hop, it displays as "H". If it's most recent move was to turn left, it displays as "L". And if it's most recent move was to turn right, it displays as "R". It's color should be the default color for critters.

9. Classes and Objects

Suppose that you are provided with a pre-written class Date as described at right. (The headings are shown, but not the method bodies, to save space.) Assume that the fields, constructor, and methods shown are already implemented. You may refer to them or use them in solving this problem if necessary.

Write an instance method named compareto that will be placed inside the Date class to become a part of each Date object's behavior. The compareTo method accepts another Date as a parameter and compares the two dates to see which comes first in chronological order. It returns an integer with one of the following values:

- a negative integer (such as -1) if the date represented by this Date comes before that of the parameter
- 0 if the two Date objects represent the same month and day
- a positive integer (such as 1) if the date represented by this Date comes after that of the parameter

For example, if these Date objects are declared in client code:

```
Date sep19 = new Date(9, 19);
Date dec15 = new Date(12, 15);
Date temp = new Date(9, 19);
Date sep11 = new Date(9, 11);
```

The following boolean expressions should have true results.

```
sep19.compareTo(sep11) > 0
sep11.compareTo(sep19) < 0
temp.compareTo(sep19) == 0
dec15.compareTo(sep11) > 0
```

Your method should not modify the state of either Date object (such as by changing their day or month field values).

```
// Each Date object stores a single
// month/day such as September 19.
// This class ignores leap years.
public class Date {
    private int month;
    private int day;
    // Constructs a date with
    // the given month and day.
    public Date(int m, int d)
    // Returns the date's day.
    public int getDay()
    // Returns the date's month.
    public int getMonth()
    // Returns the number of days
    // in this date's month.
    public int daysInMonth()
    // Modifies this date's state
    // so that it has moved forward
    // in time by l day, wrapping
    // around into the next month
    // or year if necessary.
    // example: 9/19 -> 9/20
    // example: 9/30 -> 10/1
    // example: 12/31 -> 1/1
    public void nextDay()
```

 // your method would go here

Solutions

1.
```
Call
    int[] a1 = {7};
    arrayMystery(a1);
    int[] a2 = {4, 3, 6};
arrayMystery(a2);
int[] a3 = {7, 4, 8, 6, 2};
arrayMystery(a3);
int[] a4 = {10, 2, 5, 10};
arrayMystery(a4);
int[] a5 = {2, 4, -1, 6, -2, 8};
arrayMystery(a5);
```

2.

1414
$\begin{array}{llll}7 & 9 & 14 & 2\end{array}$
1818
$\begin{array}{lll}7 & 9 & 14\end{array}$
3.
b
c 1
a 2 c 1
b
c 1
b 2 c 2
C
c 1
c 2
b
d 1 b 2 c 2
b 2 c 2
4.

```
public static void printStrings(Scanner input) {
    while (input.hasNextInt()) {
        int times = input.nextInt();
        String word = input.next();
        for (int i = 0; i < times; i++) {
            System.out.print(word);
        }
        System.out.println();
    }
}
```

5.
```
public static void reverseLines(Scanner input) {
    while (input.hasNextLine()) {
        String text = input.nextLine();
        for (int i = text.length() - 1; i >= 0; i--) {
                System.out.print(text.charAt(i));
        }
        System.out.println();
    }
}
```

6.
```
public static boolean isAllEven(int[] list) {
    for (int i = 0; i < list.length; i++) {
        if (list[i] % 2 != 0) {
            return false;
        }
    }
    return true;
}
```

7.
```
public static boolean isUnique(int[] list) {
    for (int i = 0; i < list.length; i++) {
        for (int j = i + 1; j < list.length; j++) {
            if (list[i] == list[j]) {
                return false;
            }
        }
    }
    return true;
}
```

8.
```
public class Pigeon extends Critter {
    private String display;
    private Random r;
    public Pigeon() {
        display = "*";
        r = new Random();
    }
    public Action getMove(CritterInfo info) {
        if (info.getFront() == Neighbor.EMPTY) {
            display = "H";
            return Action.HOP;
        } else {
            int flip = r.nextInt(2);
            if (flip == 0) {
                display = "L";
                return Action.LEFT;
            } else {
                display = "R";
                return Action.RIGHT;
            }
        }
    }
    public String toString() {
        return display;
    }
}
```

9. Two solutions are shown.
```
public int compareTo(Date other) {
    if (month < other.month || (month == other.month && day < other.day)) {
        return -1;
    } else if (month == other.month && day == other.day) {
        return 0;
    } else {
        return 1;
    }
}
public int compareTo(Date other) {
    if (month == other.month) {
        return day - other.day;
    } else {
        return month - other.month;
    }
}
```

