
1 of 11

CSE 142
Sample Final Exam #3

1. Array Mystery
Consider the following method:
public static void arrayMystery(int[] a) {
 for (int i = a.length - 2; i > 0; i--) {
 if (a[i + 1] <= a[i - 1]) {
 a[i]++;
 }
 }
}

Indicate in the right-hand column what values would be stored in the array after the method arrayMystery executes
if the integer array in the left-hand column is passed as a parameter to it.

Original Contents of Array Final Contents of Array

int[] a1 = {42};
arrayMystery(a1);

int[] a2 = {1, 8, 3, 6};
arrayMystery(a2);

int[] a3 = {5, 5, 5, 5, 5};
arrayMystery(a3);

int[] a4 = {10, 7, 9, 6, 8, 5};
arrayMystery(a4);

int[] a5 = {1, 0, 1, 0, 0, 1, 0};
arrayMystery(a5);

2. Reference Semantics Mystery
The following program produces 4 lines of output. Write the output below, as it would appear on the console.
import java.util.*; // for Arrays class

public class ReferenceMystery {
 public static void main(String[] args) {
 int x = 0;
 int[] a = new int[4];

 x++;
 mystery(x, a);
 System.out.println(x + " " + Arrays.toString(a));

 x++;
 mystery(x, a);
 System.out.println(x + " " + Arrays.toString(a));
 }

 public static void mystery(int x, int[] a) {
 x++;
 a[x]++;
 System.out.println(x + " " + Arrays.toString(a));
 }
}

2 of 11

3. Inheritance Mystery
Assume that the following classes have been defined:

public class Vier extends Drei {
 public void method2() {
 super.method2();
 System.out.print("Vier 2 ");
 }

 public String toString() {
 return "Vier " + super.toString();
 }
}

public class Zwei extends Eins {
 public void method2() {
 System.out.print("Zwei 2 ");
 method1();
 }
}

public class Drei extends Zwei {
 public void method1() {
 System.out.print("Drei 1 ");
 }

 public String toString() {
 return "Drei";
 }
}

public class Eins {
 public String toString() {
 return "Eins";
 }

 public void method1() {
 System.out.print("Eins 1 ");
 }

 public void method2() {
 System.out.print("Eins 2 ");
 }
}

Given the classes above, what output is produced by the following code?
Eins[] elements = {new Zwei(), new Eins(), new Vier(), new Drei()};
for (int i = 0; i < elements.length; i++) {
 System.out.println(elements[i]);
 elements[i].method1();
 System.out.println();
 elements[i].method2();
 System.out.println();
 System.out.println();
}

4. File Processing
Write a static method named coinFlip that accepts as its parameter a Scanner for an input file. Assume that the
input file data represents results of sets of coin flips that are either heads (H) or tails (T) in either upper or lower case,
separated by at least one space. Your method should consider each line to be a separate set of coin flips and should
output to the console the number of heads and the percentage of heads in that line, rounded to the nearest tenth. If this
percentage is more than 50%, you should print a "You win" message. For example, consider the following input file:
H T H H T
T t t T h H
 h

For the input above, your method should produce the following output:
3 heads (60.0%)
You win!

2 heads (33.3%)

1 heads (100.0%)
You win!

The format of your output must exactly match that shown above. You may assume that the Scanner contains at least
1 line of input, that each line contains at least one token, and that no tokens other than h, H, t, or T will be in the lines.

3 of 11

5. File Processing
Write a static method named findFirstMatch that accepts as its parameters a Scanner for an input file and an
array of Strings keywords representing a list of keywords in a search. Your method will read lines from its input
Scanner and should return the line number of the first line in the file that contains one or more words from keywords.
If none of the keywords are found in the file, your method should return a -1. The search should be case-insensitive,
so if a keyword was "banana", the line "yummy baNAna split" would be considered a line that contains the keyword.
Your method should also match whole words only, so if the only keyword in the array was "ball", the line "football
game" would not be considered a match.

For example, consider the following input file saved in sidewalk.txt, consisting of 6 lines:
Let us leave this place where the smoke blows black
And the dark street winds and bends.
Past the pits where the asphalt flowers grow
We shall walk with a walk that is measured and slow,
And watch where the chalk-white arrows go
To the place where the sidewalk ends.

The following table shows some calls to your method and their expected results.

Scanner / Array Call / Returned Value
Scanner input = new Scanner(new File("sidewalk.txt"));
String[] k1 = {"place", "winds"};

findFirstMatch(input, k1) returns 1
Scanner input = new Scanner(new File("sidewalk.txt"));
String[] k2 = {"dinosaur", "PITS", "pots"};

findFirstMatch(input, k2) returns 3
Scanner input = new Scanner(new File("sidewalk.txt"));
String[] k3 = {"chalk", "row", "g", "ends"};

findFirstMatch(input, k3) returns -1
Scanner input = new Scanner(new File("sidewalk.txt"));
String[] k4 = {"to"};

findFirstMatch(input, k4) returns 6

You may assume that none of the words in the keywords array contain spaces, i.e. all keywords are single whole
words, and the array contains at least one element. Do not modify the elements of the keywords array.

6. Array Programming
Write a static method named range that takes an array of integers as a parameter and returns the range of values
contained in the array. The range of an array is defined to be one more than the difference between its largest and
smallest element. For example, if the largest element in the array is 15 and the smallest is 4, the range is 12. If the
largest and smallest values are the same, the range is 1.

The following table shows some calls to your method and their results (the largest and smallest values are underlined):

Array Returned Value
int[] a1 = {8, 3, 5, 7, 2, 4}; range(a1) returns 7
int[] a2 = {15, 22, 8, 19, 31}; range(a2) returns 24
int[] a3 = {3, 10000000, 5, -29, 4}; range(a3) returns 10000030
int[] a4 = {100, 5}; range(a4) returns 96
int[] a5 = {32}; range(a5) returns 1

You may assume that the array contains at least one element (that its length is at least 1). You should not make any
assumptions about the values of the particular elements in the array; they could be extremely large, very small, etc.
You should not modify the contents of the array.

4 of 11

7. Array Programming
Write a static method named zeroOut that accepts two arrays of integers a1 and a2 as parameters and replaces any
occurrences of a2 in a1 with zeroes. The sequence of elements in a2 may appear anywhere in a1 but must appear
consecutively and in the same order. For example, if variables called a1 and a2 store the following values:
int[] a1 = {1, 2, 3, 4, 1, 2, 3, 4, 5};
int[] a2 = {2, 3, 4};

The call of zeroOut(a1, a2); should modify a1's contents to be {1, 0, 0, 0, 1, 0, 0, 0, 5}.
Note that the pattern can occur many times, even consecutively. For the following two arrays a3 and a4:
int[] a3 = {5, 5, 5, 18, 5, 42, 5, 5, 5, 5};
int[] a4 = {5, 5};

The call of zeroOut(a3, a4); should modify a3's contents to be {0, 0, 5, 18, 5, 42, 0, 0, 0, 0}.

You may assume that both arrays passed to your method will have lengths of at least 1. If a2 is not found in a1, or if
a1's length is shorter than a2's, then a1 is not modified by the call to your method. Please note that a1's contents are
being modified in place; you are not supposed to return a new array. Do not modify the contents of a2.

8. Critters
Write a class called Eagle that extends the Critter class. The instances of the Eagle class switch back and forth
between red and blue in an increasing pattern. They should be red for one move and then blue for one move. Then
they should be red for two moves and then blue for two moves. Then they should be red for three moves and then blue
for three moves. Then they should be red for four moves and then blue for four moves. And so on, each time
increasing the number of moves at a particular color by one. They should be displayed using a less-than character
followed by a greater-than character (<>). They should always hop whenever possible. If they can't hop, they should
turn right if there is a wall in front of them and otherwise they should infect.

5 of 11

9. Classes and Objects
Suppose that you are provided with a pre-written class
BankAccount as described at right. (The headings are shown, but
not the method bodies, to save space.) Assume that the fields,
constructor, and methods shown are already implemented. You
may refer to them or use them in solving this problem if necessary.

Write an instance method named transactionFee that will be
placed inside the BankAccount class to become a part of each
BankAccount object's behavior. The transactionFee method
accepts a fee amount (a real number) as a parameter, and applies
that fee to the user's past transactions. The fee is applied once for
the first transaction, twice for the second transaction, three times for
the third, and so on. These fees are subtracted out from the user's
overall balance. If the user's balance is large enough to afford all of
the fees with greater than $0.00 remaining, the method returns
true. If the balance cannot afford all of the fees or has no money
left, the balance is left as 0.0 and the method returns false.

For example, given the following BankAccount object:
BankAccount savings = new BankAccount("Jimmy");
savings.deposit(10.00);
savings.deposit(50.00);
savings.deposit(10.00);
savings.deposit(70.00);

The account at that point has a balance of $140.00. If the following
call were made:
savings.transactionFee(5.00)

Then the account would be deducted $5 + $10 + $15 + $20 for the
four transactions, leaving a final balance of $90.00. The method
would return true. If a second call were made,
savings.transactionFee(10.00)

Then the account would be deducted $10 + $20 + $30 + $40 for the
four transactions, leaving a final balance of $0.00. The method
would return false.

// A BankAccount keeps track of a
// user's money balance and ID,
// and counts how many transactions
// (deposits/withdrawals) are made.

public class BankAccount {
 private String id;
 private double balance;
 private int transactions;

 // Constructs a BankAccount
 // object with the given id, and
 // 0 balance and transactions.
 public BankAccount(String id)

 // returns the field values
 public double getBalance()
 public String getID()

 // Adds the amount to the balance
 // if it is between 0-500.
 // Also counts as 1 transaction.
 public void deposit(double amount)

 // Subtracts the amount from
 // the balance if the user has
 // enough money.
 // Also counts as 1 transaction.
 public void withdraw(double amount)

 // your method would go here

}

6 of 11

Solutions
1. Array Mystery

Call
int[] a1 = {42};
arrayMystery(a1);

int[] a2 = {1, 8, 3, 6};
arrayMystery(a2);

int[] a3 = {5, 5, 5, 5, 5};
arrayMystery(a3);

int[] a4 = {10, 7, 9, 6, 8, 5};
arrayMystery(a4);

int[] a5 = {1, 0, 1, 0, 0, 1, 0};
arrayMystery(a5);

Final Contents of Array
[42]

[1, 8, 4, 6]

[5, 6, 5, 6, 5]

[10, 8, 10, 7, 9, 5]

[1, 1, 1, 1, 0, 2, 0]

2. Reference Semantics Mystery
2 [0, 0, 1, 0]
1 [0, 0, 1, 0]
3 [0, 0, 1, 1]
2 [0, 0, 1, 1]

3. Inheritance Mystery
Eins
Eins 1
Zwei 2 Eins 1

Eins
Eins 1
Eins 2

Vier Drei
Drei 1
Zwei 2 Drei 1 Vier 2

Drei
Drei 1
Zwei 2 Drei 1

7 of 11

4. File Processing (three solutions shown)
public static void coinFlip(Scanner input) {
 while (input.hasNextLine()) {
 Scanner lineScan = new Scanner(input.nextLine().toUpperCase());
 int heads = 0;
 int total = 0;
 while (lineScan.hasNext()) {
 total++;
 if (lineScan.next().equals("H")) {
 heads++;
 }
 }

 double percent = 100.0 * heads / total;
 System.out.printf("%d heads (%.1f%%)\n", heads, percent);
 if (percent > 50) {
 System.out.println("You win!");
 }
 System.out.println();
 }
}

public static void coinFlip(Scanner input) {
 while (input.hasNextLine()) {
 String line = input.nextLine();
 Scanner lineScan = new Scanner(line);

 int heads = 0;
 int tails = 0;
 while (lineScan.hasNext()) {
 String flip = lineScan.next();
 if (flip.equalsIgnoreCase("H")) {
 heads++;
 } else {
 tails++;
 }
 }

 double percent = 100.0 * heads / (heads + tails);
 System.out.printf("%d heads (%.1f%%)\n", heads, percent);
 if (percent > 50) {
 System.out.println("You win!");
 }
 System.out.println();
 }
}

public static void coinFlip(Scanner input) {
 while (input.hasNextLine()) {
 String line = input.nextLine().toLowerCase();
 int heads = 0;
 int tails = 0;
 for (int i = 0; i < line.length(); i++) {
 if (line.charAt(i) == 'h') {
 heads++;
 } else if (line.charAt(i) == 't') {
 tails++;
 }
 }

 double percent = 100.0 * heads / (heads + tails);
 System.out.printf("%d heads (%.1f%%)\n", heads, percent);
 if (percent > 50) {
 System.out.println("You win!");
 }
 System.out.println();
 }
}

8 of 11

5. File Processing (two solutions shown)

public static int findFirstMatch(Scanner input, String[] keywords) {
 int lineNum = 0;
 while (input.hasNextLine()) {
 String line = input.nextLine();
 Scanner lineScan = new Scanner(line);
 lineNum++;
 while (lineScan.hasNext()) {
 String word = lineScan.next();
 for (int i = 0; i < keywords.length; i++) {
 if (keywords[i].equalsIgnoreCase(word)) {
 return lineNum;
 }
 }
 }
 }
 return -1;
}

public static int findFirstMatch(Scanner s, String[] k) {
 String[] sorted = Arrays.copyOf(k, k.length);
 Arrays.sort(sorted);
 for (int line = 1; s.hasNextLine(); line++) {
 Scanner words = new Scanner(s.nextLine());
 while (words.hasNext()) {
 if (Arrays.binarySearch(sorted, lineScan.next()) >= 0) {
 return line;
 }
 }
 }
 return -1;
}

9 of 11

6. Array Programming (four solutions shown)
public static int range(int[] a) {
 int min = 0;
 int max = 0;
 for (int i = 0; i < a.length; i++) {
 if (i == 0 || a[i] < min) {
 min = a[i];
 }
 if (i == 0 || a[i] > max) {
 max = a[i];
 }
 }

 int valueRange = max - min + 1;
 return valueRange;
}

public static int range(int[] a) {
 int min = a[0];
 int max = a[0];
 for (int i = 1; i < a.length; i++) {
 min = Math.min(min, a[i]);
 max = Math.max(max, a[i]);
 }
 return max - min + 1;
}

public static int range(int[] a) {
 int[] copy = new int[a.length];
 for (int i = 0; i < a.length; i++) {
 copy[i] = a[i];
 }
 Arrays.sort(copy);
 return copy[copy.length - 1] - copy[0] + 1;
}

public static int range(int[] a) {
 int range = 1;
 for (int i = 0; i < a.length; i++) {
 for (int j = 0; j < a.length; j++) {
 int difference = Math.abs(a[i] - a[j]) + 1;
 if (difference > range) {
 range = difference;
 }
 }
 }

 return range;
}

10 of 11

7. Array Programming (three solutions shown)
public static void zeroOut(int[] a1, int[] a2) {
 for (int i = 0; i <= a1.length - a2.length; i++) {
 int count = 0;
 for (int j = 0; j < a2.length; j++) {
 if (a1[i + j] == a2[j]) {
 count++;
 }
 }

 if (count == a2.length) { // found it
 for (int j = 0; j < a2.length; j++) {
 a1[i + j] = 0;
 }
 }
 }
}

public static void zeroOut(int[] a1, int[] a2) {
 int i2 = 0;
 for (int i1 = 0; i1 < a1.length; i1++) {
 if (a1[i1] == a2[i2]) {
 i2++;
 if (i2 == a2.length) { // found it
 for (int i = 0; i < a2.length; i++) {
 a1[i1 - i] = 0;
 }
 i2 = 0;
 }
 } else {
 i2 = 0;
 }
 }
}

public static void zeroOut(int[] a1, int[] a2) {
 int i1 = 0;
 int i2 = 0;
 while (i1 < a1.length) {
 if (a1[i1] == a2[i2]) {
 i2++;
 if (i2 == a2.length) { // found it
 while (i2 > 0) {
 a1[i1 - i2 + 1] = 0;
 i2--;
 }
 }
 } else {
 i2 = 0;
 }
 i1++;
 }
}

11 of 11

8. Critters (two solutions shown)
public class Eagle extends Critter {
 private int count;
 private int max;

 public Eagle() {
 count = 0;
 max = 1;
 }

 public Action getMove(CritterInfo info) {
 count++;
 if (count == 2 * max) {
 count = 0;
 max++;
 }
 if (info.getFront() == Neighbor.EMPTY) {
 return Action.HOP;
 } else if (info.getFront() == Neighbor.WALL) {
 return Action.RIGHT;
 } else {
 return Action.INFECT;
 }
 }

 public Color getColor() {
 if (count < max) {
 return Color.RED;
 } else {
 return Color.BLUE;
 }
 }

 public String toString() {
 return "<>";
 }
}

9. Objects

public boolean transactionFee(double amount) {
 for (int i = 1; i <= transactions; i++) {
 balance -= amount * i;
 }

 if (balance >= 0.0) {
 return true;
 } else {
 balance = 0.0;
 return false;
 }
}

