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Building Java Programs 
Chapter 4 

Lecture 4-3: Strings; char; procedural design 

reading: 3.3, 4.3, 4.5 

Strings 

reading: 3.3 
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Objects 
  object: An entity that contains data and behavior. 

  data:  variables inside the object 
  behavior:  methods inside the object 

  You interact with the methods; 
the data is hidden in the object. 

  A class is a type of objects. 

  Constructing (creating) an object: 
<type> <objectName> = new <type>(<parameters>); 

  Calling an object's method: 
<objectName>.<methodName>(<parameters>); 
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Strings 
  string: An object storing a sequence of text characters. 

  Unlike most other objects, a String is not created with new. 

 String <name> = "<text>"; 

 String <name> = <expression with String value>; 

  Examples: 

String name = "Glen Hansard"; 

int x = 3; 
int y = 5; 
String point = "(" + x + ", " + y + ")"; 
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Indexes 
  Characters of a string are numbered with 0-based indexes: 

 String name = "M. Mouse"; 

  First character's index : 0 
  Last character's index : 1 less than the string's length 

  The individual characters are values of type char (seen later) 

index 0 1 2 3 4 5 6 7 

character M . M o u s e 
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String methods 

  These methods are called using the dot notation: 

String popStarz = "Prince vs. Michael"; 
System.out.println(popStarz.length());   // 18 

Method name Description 

indexOf(<string>) index where the start of the given string 
appears in this string (-1 if not found) 

length() number of characters in this string 

substring(<index1>, <index2>) 
or 
substring(<index1>) 

the characters in this string from index1 
(inclusive) to index2 (exclusive); 
if index2 is omitted, grabs until end of 
string 

toLowerCase() a new string with all lowercase letters 

toUpperCase() a new string with all uppercase letters 
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String method examples 
 // index     012345678901 
 String s1 = "Stuart Reges"; 
 String s2 = "Marty Stepp"; 

 System.out.println(s1.length());         // 12 
 System.out.println(s1.indexOf("e"));     // 8 
 System.out.println(s1.substring(7, 10)); // "Reg" 

 String s3 = s2.substring(1, 7); 
 System.out.println(s3.toLowerCase());    // "arty s" 

  Given the following string: 

 // index       0123456789012345678901 
 String book = "Building Java Programs"; 

  How would you extract the word "Java" ? 
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Modifying strings 
  Methods like substring and toLowerCase build and return 

a new string, rather than modifying the current string. 

 String s = "Mumford & Sons"; 
 s.toUpperCase(); 
 System.out.println(s);   // Mumford & Sons 

  To modify a variable's value, you must reassign it: 

 String s = "Mumford & Sons"; 
 s = s.toUpperCase(); 
 System.out.println(s);   // MUMFORD & SONS 
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Strings as user input 
  Scanner's next method reads a word of input as a String. 

 Scanner console = new Scanner(System.in); 
 System.out.print("What is your name? "); 
 String name = console.next(); 
 name = name.toUpperCase(); 
 System.out.println(name + " has " + name.length() +  
     " letters and starts with " + name.substring(0, 1)); 

 Output: 
 What is your name? Bono 
 BONO has 4 letters and starts with B 

  The nextLine method reads a line of input as a String. 

 System.out.print("What is your address? "); 
 String address = console.nextLine(); 
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Strings question 
  Write a program that outputs “The Name Game” with a 

person’s first and last name. 

Example Output: 
What is your name? James Joyce 

James, James, bo-bames 

Banana-fana fo-fames 

Fee-fi-mo-mames 

JAMES! 

Joyce, Joyce, bo-boyce 

Banana-fana fo-foyce 

Fee-fi-mo-moyce 

JOYCE! 
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Strings answer 
// This program prints "The Name Game". 
import java.util.*; 

public class TheNameGame { 
    public static void main(String[] args) { 
        Scanner console = new Scanner(System.in); 
        System.out.print("What is your name? "); 
        String name = console.nextLine(); 

        int spaceIndex = name.indexOf(" "); 
        String firstName = name.substring(0, spaceIndex); 
        String lastName = name.substring(spaceIndex + 1); 

        singSong(firstName); 
        singSong(lastName); 
    } 
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Strings answer (cont.) 
 public static void singSong(String name) { 
        System.out.println(); 
        String allButLast = name.substring(1); 
        System.out.println(name + ", " + name + ", bo-b" + allButLast); 
        System.out.println("Banana-fana fo-f" + allButLast); 
        System.out.println("Fee-fi-mo-m" + allButLast); 
        System.out.println(name.toUpperCase() + "!"); 
    } 
} 
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Comparing strings 
  Relational operators such as < and == fail on objects. 

 Scanner console = new Scanner(System.in); 
 System.out.print("What is your name? "); 
 String name = console.next(); 
 if (name == "Barney") { 
     System.out.println("I love you, you love me,"); 
     System.out.println("We’re a happy family!"); 
 } 

  This code will compile, but it will not print the song. 

  == compares objects by references (seen later), so it often 
gives false even when two Strings have the same letters. 
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The equals method 
  Objects are compared using a method named equals. 

 Scanner console = new Scanner(System.in); 
 System.out.print("What is your name? "); 
 String name = console.next(); 
 if (name.equals("Barney")) { 
     System.out.println("I love you, you love me,"); 
     System.out.println("We’re a happy family!"); 
 } 

  Technically this is a method that returns a value of type boolean, 
the type used in logical tests. 
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String test methods 

  String name = console.nextLine(); 

 if (name.endsWith("Yeats")) { 
    System.out.println("Say my glory was I had such friends."); 

} else if (name.equalsIgnoreCase("OSCAR WILDE")) { 
    System.out.println("A true friend stabs you in the front."); 

} 

Method Description 

equals(<str>) whether two strings contain the same characters 

equalsIgnoreCase(<str>) whether two strings contain the same characters, 
ignoring upper vs. lower case 

startsWith(<str>) whether one contains other's characters at start 

endsWith(<str>) whether one contains other's characters at end 

contains(<str>) whether the given string is found within this one 

char 

reading: 4.3 
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Type char 
  char : A primitive type representing single characters. 

  A String is stored internally as an array of char 

String s = "nachos"; 

  It is legal to have variables, parameters, returns of type char 
  surrounded with apostrophes:   'a'  or  '4'  or  '\n'  or  '\'' 

    char initial = 'J'; 
  System.out.println(initial);             // J 
  System.out.println(initial + " Joyce");  // J Joyce 

index 0 1 2 3 4 5 

value 'n' 'a' 'c' 'h' 'o' 's' 
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The charAt method 
  The chars in a String can be accessed using the charAt method. 

  accepts an int index parameter and returns the char at that index 

 String food = "cookie"; 
 char firstLetter = food.charAt(0);   // 'c' 

 System.out.println(firstLetter + " is for " + food); 

  You can use a for loop to print or examine each character. 
 String major = "CSE"; 
 for (int i = 0; i < major.length(); i++) {    // output: 
     char c = major.charAt(i);                 // C 
     System.out.println(c);                    // S 
 }                                             // E 
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Comparing char values 
  You can compare chars with ==, !=, and other operators: 

 String word = console.next(); 
 char last = word.charAt(word.length() - 1); 
 if (last == 's') { 
     System.out.println(word + " is plural."); 
 } 

 // prints the alphabet 
 for (char c = 'a'; c <= 'z'; c++) { 
     System.out.print(c); 
 } 
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char vs. int 
  Each char is mapped to an integer value internally 

  Called an ASCII value 

 'A'  is  65  'B'  is  66  ' '  is  32 
 'a'  is  97  'b'  is  98  '*'  is  42 

  Mixing char and int causes automatic conversion to int. 
 'a' + 10  is 107,   'A' + 'A'  is 130 

  To convert an int into the equivalent char, type-cast it. 
 (char) ('a' + 2)  is  'c' 
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char vs. String 
  "h" is a String, but 'h' is a char  (they are different) 

  A String is an object; it contains methods. 
String s = "h"; 
s = s.toUpperCase();        // "H" 
int len = s.length();       //  1 
char first = s.charAt(0);   // 'H' 

  A char is primitive; you can't call methods on it. 
char c = 'h'; 
c = c.toUpperCase();             // ERROR 
s = s.charAt(0).toUpperCase();   // ERROR 

  What is s + 1 ?  What is c + 1 ?  
  What is s + s ?  What is c + c ? 

printf 

reading: 4.3 
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Formatting text with printf 
System.out.printf("<format string>", <parameters>); 

  A format string can contain placeholders to insert parameters: 
  %d  integer 
  %f  real number 
  %s  string 
  %c  character 

(these placeholders are used instead of + concatenation) 

  Example: 

 int x = 3; 
 int y = -17; 
 System.out.printf("x is %d and y is %d!\n", x, y); 
                   // x is 3 and y is -17! 

Note: printf does not drop to the next line unless you write \n 
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printf precision 
  %.<D>f  real number, rounded to <D> digits after decimal 

 double gpa = 3.253764; 

 System.out.printf("your GPA is %.1f\n", gpa); 

 Output: 

 your GPA is 3.3 
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Procedural design 

reading: 4.5 
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Recall: BMI program 
 Formula for body mass index (BMI): 

  Write a program that produces output like the following: 
This program reads data for two people and 
computes their body mass index (BMI). 

Enter next person's information: 
height (in inches)? 70.0 
weight (in pounds)? 194.25 

Enter next person's information: 
height (in inches)? 62.5 
weight (in pounds)? 130.5 

Person 1 BMI = 27.868928571428572 
overweight 
Person 2 BMI = 23.485824 
normal 
Difference = 4.3831045714285715 

BMI Weight class 
below 18.5 underweight 
18.5 - 24.9 normal 
25.0 - 29.9 overweight 
30.0 and up obese 
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"Chaining" 
  main should be a concise summary of your program. 

  It is bad if each method calls the next without ever returning 
(we call this chaining): 

  A better structure has main make most of the calls. 
  Methods must return values to main to be passed on later. 

main 
methodA 

methodB 
methodC 

methodD 

main 
methodA 

methodB 
methodC 

methodD 
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Bad "chain" code 
public class BMI { 
    public static void main(String[] args) { 
        System.out.println("This program reads ... (etc.)"); 
        Scanner console = new Scanner(System.in); 
        person(console); 
    } 

    public static void person(Scanner console) { 
        System.out.println("Enter next person's information:"); 
        System.out.print("height (in inches)? "); 
        double height = console.nextDouble(); 
        getWeight(console, height); 
    } 

    public static void getWeight(Scanner console, double height) { 
        System.out.print("weight (in pounds)? "); 
        double weight = console.nextDouble(); 
        computeBMI(console, height, weight); 
    } 

    public static void computeBMI(Scanner s, double h, double w) { 
        ... 
    } 
} 
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Procedural heuristics 
1.  Each method should have a clear set of responsibilities. 

2.  No method should do too large a share of the overall task. 

3.  Minimize coupling and dependencies between methods. 

4.  The main method should read as a concise summary of 
the overall set of tasks performed by the program. 

5.  Data should be declared/used at the lowest level possible. 


