
1

1

Building Java Programs
Chapter 4

Lecture 4-3: Strings; char; procedural design

reading: 3.3, 4.3, 4.5

Strings

reading: 3.3

2

3

Objects
  object: An entity that contains data and behavior.

  data: variables inside the object
  behavior: methods inside the object

  You interact with the methods;
the data is hidden in the object.

  A class is a type of objects.

  Constructing (creating) an object:
<type> <objectName> = new <type>(<parameters>);

  Calling an object's method:
<objectName>.<methodName>(<parameters>);

4

Strings
  string: An object storing a sequence of text characters.

  Unlike most other objects, a String is not created with new.

 String <name> = "<text>";

 String <name> = <expression with String value>;

  Examples:

String name = "Glen Hansard";

int x = 3;
int y = 5;
String point = "(" + x + ", " + y + ")";

3

5

Indexes
  Characters of a string are numbered with 0-based indexes:

 String name = "M. Mouse";

  First character's index : 0
  Last character's index : 1 less than the string's length

  The individual characters are values of type char (seen later)

index 0 1 2 3 4 5 6 7

character M . M o u s e

6

String methods

  These methods are called using the dot notation:

String popStarz = "Prince vs. Michael";
System.out.println(popStarz.length()); // 18

Method name Description

indexOf(<string>) index where the start of the given string
appears in this string (-1 if not found)

length() number of characters in this string

substring(<index1>, <index2>)
or
substring(<index1>)

the characters in this string from index1
(inclusive) to index2 (exclusive);
if index2 is omitted, grabs until end of
string

toLowerCase() a new string with all lowercase letters

toUpperCase() a new string with all uppercase letters

4

7

String method examples
 // index 012345678901
 String s1 = "Stuart Reges";
 String s2 = "Marty Stepp";

 System.out.println(s1.length()); // 12
 System.out.println(s1.indexOf("e")); // 8
 System.out.println(s1.substring(7, 10)); // "Reg"

 String s3 = s2.substring(1, 7);
 System.out.println(s3.toLowerCase()); // "arty s"

  Given the following string:

 // index 0123456789012345678901
 String book = "Building Java Programs";

  How would you extract the word "Java" ?

8

Modifying strings
  Methods like substring and toLowerCase build and return

a new string, rather than modifying the current string.

 String s = "Mumford & Sons";
 s.toUpperCase();
 System.out.println(s); // Mumford & Sons

  To modify a variable's value, you must reassign it:

 String s = "Mumford & Sons";
 s = s.toUpperCase();
 System.out.println(s); // MUMFORD & SONS

5

9

Strings as user input
  Scanner's next method reads a word of input as a String.

 Scanner console = new Scanner(System.in);
 System.out.print("What is your name? ");
 String name = console.next();
 name = name.toUpperCase();
 System.out.println(name + " has " + name.length() +
 " letters and starts with " + name.substring(0, 1));

 Output:
 What is your name? Bono
 BONO has 4 letters and starts with B

  The nextLine method reads a line of input as a String.

 System.out.print("What is your address? ");
 String address = console.nextLine();

10

Strings question
  Write a program that outputs “The Name Game” with a

person’s first and last name.

Example Output:
What is your name? James Joyce

James, James, bo-bames

Banana-fana fo-fames

Fee-fi-mo-mames

JAMES!

Joyce, Joyce, bo-boyce

Banana-fana fo-foyce

Fee-fi-mo-moyce

JOYCE!

6

11

Strings answer
// This program prints "The Name Game".
import java.util.*;

public class TheNameGame {
 public static void main(String[] args) {
 Scanner console = new Scanner(System.in);
 System.out.print("What is your name? ");
 String name = console.nextLine();

 int spaceIndex = name.indexOf(" ");
 String firstName = name.substring(0, spaceIndex);
 String lastName = name.substring(spaceIndex + 1);

 singSong(firstName);
 singSong(lastName);
 }

12

Strings answer (cont.)
 public static void singSong(String name) {
 System.out.println();
 String allButLast = name.substring(1);
 System.out.println(name + ", " + name + ", bo-b" + allButLast);
 System.out.println("Banana-fana fo-f" + allButLast);
 System.out.println("Fee-fi-mo-m" + allButLast);
 System.out.println(name.toUpperCase() + "!");
 }
}

7

13

Comparing strings
  Relational operators such as < and == fail on objects.

 Scanner console = new Scanner(System.in);
 System.out.print("What is your name? ");
 String name = console.next();
 if (name == "Barney") {
 System.out.println("I love you, you love me,");
 System.out.println("We’re a happy family!");
 }

  This code will compile, but it will not print the song.

  == compares objects by references (seen later), so it often
gives false even when two Strings have the same letters.

14

The equals method
  Objects are compared using a method named equals.

 Scanner console = new Scanner(System.in);
 System.out.print("What is your name? ");
 String name = console.next();
 if (name.equals("Barney")) {
 System.out.println("I love you, you love me,");
 System.out.println("We’re a happy family!");
 }

  Technically this is a method that returns a value of type boolean,
the type used in logical tests.

8

15

String test methods

 String name = console.nextLine();

 if (name.endsWith("Yeats")) {
 System.out.println("Say my glory was I had such friends.");

} else if (name.equalsIgnoreCase("OSCAR WILDE")) {
 System.out.println("A true friend stabs you in the front.");

}

Method Description

equals(<str>) whether two strings contain the same characters

equalsIgnoreCase(<str>) whether two strings contain the same characters,
ignoring upper vs. lower case

startsWith(<str>) whether one contains other's characters at start

endsWith(<str>) whether one contains other's characters at end

contains(<str>) whether the given string is found within this one

char

reading: 4.3

9

17

Type char
  char : A primitive type representing single characters.

  A String is stored internally as an array of char

String s = "nachos";

  It is legal to have variables, parameters, returns of type char
  surrounded with apostrophes: 'a' or '4' or '\n' or '\''

 char initial = 'J';
 System.out.println(initial); // J
 System.out.println(initial + " Joyce"); // J Joyce

index 0 1 2 3 4 5

value 'n' 'a' 'c' 'h' 'o' 's'

18

The charAt method
  The chars in a String can be accessed using the charAt method.

  accepts an int index parameter and returns the char at that index

 String food = "cookie";
 char firstLetter = food.charAt(0); // 'c'

 System.out.println(firstLetter + " is for " + food);

  You can use a for loop to print or examine each character.
 String major = "CSE";
 for (int i = 0; i < major.length(); i++) { // output:
 char c = major.charAt(i); // C
 System.out.println(c); // S
 } // E

10

19

Comparing char values
  You can compare chars with ==, !=, and other operators:

 String word = console.next();
 char last = word.charAt(word.length() - 1);
 if (last == 's') {
 System.out.println(word + " is plural.");
 }

 // prints the alphabet
 for (char c = 'a'; c <= 'z'; c++) {
 System.out.print(c);
 }

20

char vs. int
  Each char is mapped to an integer value internally

  Called an ASCII value

 'A' is 65 'B' is 66 ' ' is 32
 'a' is 97 'b' is 98 '*' is 42

  Mixing char and int causes automatic conversion to int.
 'a' + 10 is 107, 'A' + 'A' is 130

  To convert an int into the equivalent char, type-cast it.
 (char) ('a' + 2) is 'c'

11

21

char vs. String
  "h" is a String, but 'h' is a char (they are different)

  A String is an object; it contains methods.
String s = "h";
s = s.toUpperCase(); // "H"
int len = s.length(); // 1
char first = s.charAt(0); // 'H'

  A char is primitive; you can't call methods on it.
char c = 'h';
c = c.toUpperCase(); // ERROR
s = s.charAt(0).toUpperCase(); // ERROR

  What is s + 1 ? What is c + 1 ?
  What is s + s ? What is c + c ?

printf

reading: 4.3

12

23

Formatting text with printf
System.out.printf("<format string>", <parameters>);

  A format string can contain placeholders to insert parameters:
  %d integer
  %f real number
  %s string
  %c character

(these placeholders are used instead of + concatenation)

  Example:

 int x = 3;
 int y = -17;
 System.out.printf("x is %d and y is %d!\n", x, y);
 // x is 3 and y is -17!

Note: printf does not drop to the next line unless you write \n

24

printf precision
  %.<D>f real number, rounded to <D> digits after decimal

 double gpa = 3.253764;

 System.out.printf("your GPA is %.1f\n", gpa);

 Output:

 your GPA is 3.3

13

Procedural design

reading: 4.5

26

Recall: BMI program
 Formula for body mass index (BMI):

  Write a program that produces output like the following:
This program reads data for two people and
computes their body mass index (BMI).

Enter next person's information:
height (in inches)? 70.0
weight (in pounds)? 194.25

Enter next person's information:
height (in inches)? 62.5
weight (in pounds)? 130.5

Person 1 BMI = 27.868928571428572
overweight
Person 2 BMI = 23.485824
normal
Difference = 4.3831045714285715

BMI Weight class
below 18.5 underweight
18.5 - 24.9 normal
25.0 - 29.9 overweight
30.0 and up obese

14

27

"Chaining"
  main should be a concise summary of your program.

  It is bad if each method calls the next without ever returning
(we call this chaining):

  A better structure has main make most of the calls.
  Methods must return values to main to be passed on later.

main
methodA

methodB
methodC

methodD

main
methodA

methodB
methodC

methodD

28

Bad "chain" code
public class BMI {
 public static void main(String[] args) {
 System.out.println("This program reads ... (etc.)");
 Scanner console = new Scanner(System.in);
 person(console);
 }

 public static void person(Scanner console) {
 System.out.println("Enter next person's information:");
 System.out.print("height (in inches)? ");
 double height = console.nextDouble();
 getWeight(console, height);
 }

 public static void getWeight(Scanner console, double height) {
 System.out.print("weight (in pounds)? ");
 double weight = console.nextDouble();
 computeBMI(console, height, weight);
 }

 public static void computeBMI(Scanner s, double h, double w) {
 ...
 }
}

15

29

Procedural heuristics
1.  Each method should have a clear set of responsibilities.

2.  No method should do too large a share of the overall task.

3.  Minimize coupling and dependencies between methods.

4.  The main method should read as a concise summary of
the overall set of tasks performed by the program.

5.  Data should be declared/used at the lowest level possible.

