
1

1

Building Java Programs
Chapter 4

Lecture 4-3: Strings; char; procedural design

reading: 3.3, 4.3, 4.5

Strings

reading: 3.3

2

3

Objects
  object: An entity that contains data and behavior.

  data: variables inside the object
  behavior: methods inside the object

  You interact with the methods;
the data is hidden in the object.

  A class is a type of objects.

  Constructing (creating) an object:
<type> <objectName> = new <type>(<parameters>);

  Calling an object's method:
<objectName>.<methodName>(<parameters>);

4

Strings
  string: An object storing a sequence of text characters.

  Unlike most other objects, a String is not created with new.

 String <name> = "<text>";

 String <name> = <expression with String value>;

  Examples:

String name = "Glen Hansard";

int x = 3;
int y = 5;
String point = "(" + x + ", " + y + ")";

3

5

Indexes
  Characters of a string are numbered with 0-based indexes:

 String name = "M. Mouse";

  First character's index : 0
  Last character's index : 1 less than the string's length

  The individual characters are values of type char (seen later)

index 0 1 2 3 4 5 6 7

character M . M o u s e

6

String methods

  These methods are called using the dot notation:

String popStarz = "Prince vs. Michael";
System.out.println(popStarz.length()); // 18

Method name Description

indexOf(<string>) index where the start of the given string
appears in this string (-1 if not found)

length() number of characters in this string

substring(<index1>, <index2>)
or
substring(<index1>)

the characters in this string from index1
(inclusive) to index2 (exclusive);
if index2 is omitted, grabs until end of
string

toLowerCase() a new string with all lowercase letters

toUpperCase() a new string with all uppercase letters

4

7

String method examples
 // index 012345678901
 String s1 = "Stuart Reges";
 String s2 = "Marty Stepp";

 System.out.println(s1.length()); // 12
 System.out.println(s1.indexOf("e")); // 8
 System.out.println(s1.substring(7, 10)); // "Reg"

 String s3 = s2.substring(1, 7);
 System.out.println(s3.toLowerCase()); // "arty s"

  Given the following string:

 // index 0123456789012345678901
 String book = "Building Java Programs";

  How would you extract the word "Java" ?

8

Modifying strings
  Methods like substring and toLowerCase build and return

a new string, rather than modifying the current string.

 String s = "Mumford & Sons";
 s.toUpperCase();
 System.out.println(s); // Mumford & Sons

  To modify a variable's value, you must reassign it:

 String s = "Mumford & Sons";
 s = s.toUpperCase();
 System.out.println(s); // MUMFORD & SONS

5

9

Strings as user input
  Scanner's next method reads a word of input as a String.

 Scanner console = new Scanner(System.in);
 System.out.print("What is your name? ");
 String name = console.next();
 name = name.toUpperCase();
 System.out.println(name + " has " + name.length() +
 " letters and starts with " + name.substring(0, 1));

 Output:
 What is your name? Bono
 BONO has 4 letters and starts with B

  The nextLine method reads a line of input as a String.

 System.out.print("What is your address? ");
 String address = console.nextLine();

10

Strings question
  Write a program that outputs “The Name Game” with a

person’s first and last name.

Example Output:
What is your name? James Joyce

James, James, bo-bames

Banana-fana fo-fames

Fee-fi-mo-mames

JAMES!

Joyce, Joyce, bo-boyce

Banana-fana fo-foyce

Fee-fi-mo-moyce

JOYCE!

6

11

Strings answer
// This program prints "The Name Game".
import java.util.*;

public class TheNameGame {
 public static void main(String[] args) {
 Scanner console = new Scanner(System.in);
 System.out.print("What is your name? ");
 String name = console.nextLine();

 int spaceIndex = name.indexOf(" ");
 String firstName = name.substring(0, spaceIndex);
 String lastName = name.substring(spaceIndex + 1);

 singSong(firstName);
 singSong(lastName);
 }

12

Strings answer (cont.)
 public static void singSong(String name) {
 System.out.println();
 String allButLast = name.substring(1);
 System.out.println(name + ", " + name + ", bo-b" + allButLast);
 System.out.println("Banana-fana fo-f" + allButLast);
 System.out.println("Fee-fi-mo-m" + allButLast);
 System.out.println(name.toUpperCase() + "!");
 }
}

7

13

Comparing strings
  Relational operators such as < and == fail on objects.

 Scanner console = new Scanner(System.in);
 System.out.print("What is your name? ");
 String name = console.next();
 if (name == "Barney") {
 System.out.println("I love you, you love me,");
 System.out.println("We’re a happy family!");
 }

  This code will compile, but it will not print the song.

  == compares objects by references (seen later), so it often
gives false even when two Strings have the same letters.

14

The equals method
  Objects are compared using a method named equals.

 Scanner console = new Scanner(System.in);
 System.out.print("What is your name? ");
 String name = console.next();
 if (name.equals("Barney")) {
 System.out.println("I love you, you love me,");
 System.out.println("We’re a happy family!");
 }

  Technically this is a method that returns a value of type boolean,
the type used in logical tests.

8

15

String test methods

 String name = console.nextLine();

 if (name.endsWith("Yeats")) {
 System.out.println("Say my glory was I had such friends.");

} else if (name.equalsIgnoreCase("OSCAR WILDE")) {
 System.out.println("A true friend stabs you in the front.");

}

Method Description

equals(<str>) whether two strings contain the same characters

equalsIgnoreCase(<str>) whether two strings contain the same characters,
ignoring upper vs. lower case

startsWith(<str>) whether one contains other's characters at start

endsWith(<str>) whether one contains other's characters at end

contains(<str>) whether the given string is found within this one

char

reading: 4.3

9

17

Type char
  char : A primitive type representing single characters.

  A String is stored internally as an array of char

String s = "nachos";

  It is legal to have variables, parameters, returns of type char
  surrounded with apostrophes: 'a' or '4' or '\n' or '\''

 char initial = 'J';
 System.out.println(initial); // J
 System.out.println(initial + " Joyce"); // J Joyce

index 0 1 2 3 4 5

value 'n' 'a' 'c' 'h' 'o' 's'

18

The charAt method
  The chars in a String can be accessed using the charAt method.

  accepts an int index parameter and returns the char at that index

 String food = "cookie";
 char firstLetter = food.charAt(0); // 'c'

 System.out.println(firstLetter + " is for " + food);

  You can use a for loop to print or examine each character.
 String major = "CSE";
 for (int i = 0; i < major.length(); i++) { // output:
 char c = major.charAt(i); // C
 System.out.println(c); // S
 } // E

10

19

Comparing char values
  You can compare chars with ==, !=, and other operators:

 String word = console.next();
 char last = word.charAt(word.length() - 1);
 if (last == 's') {
 System.out.println(word + " is plural.");
 }

 // prints the alphabet
 for (char c = 'a'; c <= 'z'; c++) {
 System.out.print(c);
 }

20

char vs. int
  Each char is mapped to an integer value internally

  Called an ASCII value

 'A' is 65 'B' is 66 ' ' is 32
 'a' is 97 'b' is 98 '*' is 42

  Mixing char and int causes automatic conversion to int.
 'a' + 10 is 107, 'A' + 'A' is 130

  To convert an int into the equivalent char, type-cast it.
 (char) ('a' + 2) is 'c'

11

21

char vs. String
  "h" is a String, but 'h' is a char (they are different)

  A String is an object; it contains methods.
String s = "h";
s = s.toUpperCase(); // "H"
int len = s.length(); // 1
char first = s.charAt(0); // 'H'

  A char is primitive; you can't call methods on it.
char c = 'h';
c = c.toUpperCase(); // ERROR
s = s.charAt(0).toUpperCase(); // ERROR

  What is s + 1 ? What is c + 1 ?
  What is s + s ? What is c + c ?

printf

reading: 4.3

12

23

Formatting text with printf
System.out.printf("<format string>", <parameters>);

  A format string can contain placeholders to insert parameters:
  %d integer
  %f real number
  %s string
  %c character

(these placeholders are used instead of + concatenation)

  Example:

 int x = 3;
 int y = -17;
 System.out.printf("x is %d and y is %d!\n", x, y);
 // x is 3 and y is -17!

Note: printf does not drop to the next line unless you write \n

24

printf precision
  %.<D>f real number, rounded to <D> digits after decimal

 double gpa = 3.253764;

 System.out.printf("your GPA is %.1f\n", gpa);

 Output:

 your GPA is 3.3

13

Procedural design

reading: 4.5

26

Recall: BMI program
 Formula for body mass index (BMI):

  Write a program that produces output like the following:
This program reads data for two people and
computes their body mass index (BMI).

Enter next person's information:
height (in inches)? 70.0
weight (in pounds)? 194.25

Enter next person's information:
height (in inches)? 62.5
weight (in pounds)? 130.5

Person 1 BMI = 27.868928571428572
overweight
Person 2 BMI = 23.485824
normal
Difference = 4.3831045714285715

BMI Weight class
below 18.5 underweight
18.5 - 24.9 normal
25.0 - 29.9 overweight
30.0 and up obese

14

27

"Chaining"
  main should be a concise summary of your program.

  It is bad if each method calls the next without ever returning
(we call this chaining):

  A better structure has main make most of the calls.
  Methods must return values to main to be passed on later.

main
methodA

methodB
methodC

methodD

main
methodA

methodB
methodC

methodD

28

Bad "chain" code
public class BMI {
 public static void main(String[] args) {
 System.out.println("This program reads ... (etc.)");
 Scanner console = new Scanner(System.in);
 person(console);
 }

 public static void person(Scanner console) {
 System.out.println("Enter next person's information:");
 System.out.print("height (in inches)? ");
 double height = console.nextDouble();
 getWeight(console, height);
 }

 public static void getWeight(Scanner console, double height) {
 System.out.print("weight (in pounds)? ");
 double weight = console.nextDouble();
 computeBMI(console, height, weight);
 }

 public static void computeBMI(Scanner s, double h, double w) {
 ...
 }
}

15

29

Procedural heuristics
1.  Each method should have a clear set of responsibilities.

2.  No method should do too large a share of the overall task.

3.  Minimize coupling and dependencies between methods.

4.  The main method should read as a concise summary of
the overall set of tasks performed by the program.

5.  Data should be declared/used at the lowest level possible.

