
1

Building Java Programs

Chapter 8
Lecture 8-3: Object state;

Homework 8 (Critters)

reading: 8.3 - 8.4

2

The keyword this

reading: 8.3

2

3

The this keyword
  this : Refers to the implicit parameter inside your class.

 (a variable that stores the object on which a method is called)

  Refer to a field: this.<field>

  Call a method: this.<method>(<parameters>);

  One constructor this(<parameters>);
can call another:

4

Variable shadowing
  shadowing: 2 variables with same name in same scope.

  Normally illegal, except when one variable is a field.

 public class Point {
 private int x;
 private int y;

 ...

 // this is legal
 public void setLocation(int x, int y) {
 ...
 }

  In most of the class, x and y refer to the fields.
  In setLocation, x and y refer to the method's parameters.

3

5

Fixing shadowing
 public class Point {
 private int x;
 private int y;

 ...

 public void setLocation(int x, int y) {
 this.x = x;
 this.y = y;
 }
 }

  Inside setLocation,
  To refer to the data field x, say this.x
  To refer to the parameter x, say x

Object state

4

7

The Parent class
public class Parent {
 private int count;

 public Parent() {
 count = 0;
 }

 public String areWeThereYet() {
 count++;
 if (count >= 7) {
 return "NO!!!! Now sit down and shut up, you ungrateful little brat!";
 } else if (count % 2 == 0) {
 return "We'll be there soon";
 } else {
 return "We're almost there";
 }
 }
}

8

The Parent class: Version 2
public class Parent {
 private int count;
 private int threshold;

 public Parent(int threshold) {
 count = 0;
 this.threshold = threshold;
 }

 public String areWeThereYet() {
 count++;
 if (count >= threshold) {
 return "NO!!!! Now sit down and shut up, you ungrateful little brat!";
 } else if (count % 2 == 0) {
 return "We'll be there soon";
 } else {
 return "We're almost there";
 }
 }
}

5

9

Exercise
 Write a class Remote that implements a TV remote

control with a “jump” button. The remote keeps
track of the TV channel. When the user presses
“jump”, the channel is set to the previous channel.

The remote should have the following methods:
  up(): sets the channel to be the next one up
  down(): sets the channel to be the next one down
  setChannel(int): sets the channel to an arbitrary

channel
  jump(): sets the channel to the previous channel

10

Solution

public class Remote {
 private int channel;
 private int previousChannel;

 public Remote() {
 channel = 2;
 previousChannel = 2;
 }

 public void up() {
 setChannel(channel + 1);
 }

 public void down() {
 setChannel(channel – 1);
 }

 ...

 public void jump() {
 setChannel(previousChannel);
 }

 public void setChannel(int num) {
 previousChannel = channel;
 channel = num;
 printChannel();
 }

 public void printChannel() {
 System.out.println("The channel is "
 + channel);
 }
}

6

11

Homework 8:
Critters

reading: HW8 assignment spec

12

Critters
  A simulation world with animal objects.
  Animals move around and can infect one another.

  If an animal A infects an animal B, then B becomes the same
species as A.

7

13

Critters
  Critter objects have the following behavior:

  getColor color to display
  getMove action
  toString letter to display

  You must implement:
  Bear
  Giant
  Lion
  Husky (creative)

14

A Critter subclass
public class <name> extends Critter {
 ...

}

  extends Critter tells the simulator your class is a critter
  an example of inheritance

  Write some/all 3 methods to give your animals behavior.

8

15

A completely valid critter
public class Default extends Critter {
}

•  The critters of this species are black question marks that
always turn left.

16

How the simulator works
  When you press "Go", the simulator enters a loop:

  Asks each animal (getMove) once what move it wants to make
  The order that the animals are asked changes over the course of

the simulation

  Key concept: The simulator is in control, NOT your animal.
  Example: getMove can return only one move at a time.
getMove can't use loops to return a sequence of moves.
  It wouldn't be fair to let one animal make many moves in one turn!

  Your animal must keep state (as fields) so that it can make a
single move, and know what moves to make later.

9

17

The getMove method

Constant Description

Action.HOP Move forward one square in its current direction

Action.LEFT Turn left (rotate 90 degrees counter-clockwise)

Action.RIGHT Turn right (rotate 90 degrees clockwise)

Action.INFECT Infect the critter in front of you

  The simulator will ask your critter for a move via the getMove
method

  The getMove method must return one of the following constants
from the Action class:

18

Implementing a Critter
  Critters redefine the following methods

 public Action getMove(CritterInfo info) {
 ...
 }

 public Color getColor() {
 ...
 }

 public String toString() {
 ...
 }

10

19

Example Critter
import java.awt.*;
public class Food extends Critter {
 public Action getMove(CritterInfo info) {
 return Action.INFECT;
 }
 public Color getColor() {
 return Color.GREEN;
 }
 public String toString() {
 return "F";
 }
}

20

getMove and CritterInfo
  The getMove method takes a CritterInfo object as

parameter:

 public Action getMove(CritterInfo info) {
 ...
 }

  CritterInfo methods:

Method Description

public Neighbor getFront() returns neighbor in front

public Neighbor getBack() returns neighbor in behind

public Neighbor getLeft() returns neighbor to the left

public Neighbor getRight() returns neighbor to the right

public Direction getDirection() returns direction critter is facing

public int getInfectCount() returns # of critters infected by
critter

11

21

Hello Neighbor!

 public Action getMove(CritterInfo info) {
 if (info.getFront() == Neighbor.EMPTY) {
 return Action.HOP;
 } else {
 return Action.LEFT;
 }
 }

Constant Description

Neighbor.WALL The neighbor in that direction is a wall

Neighbor.EMPTY The neighbor in that direction is an empty square

Neighbor.SAME The neighbor in that direction is a critter of your
species

Neighbor.OTHER The neighbor in that direction is a critter of another
species

22

Direction

 public Action getMove(CritterInfo info) {
 if (info.getDirection() == Direction.NORTH) {
 return Action.INFECT;
 } else {
 return Action.LEFT;
 }
 }

Constant Description

Direction.NORTH facing north

Direction.SOUTH facing south

Direction.EAST facing east

Direction.WEST facing west

12

23

Critter exercise: FlyTrap
  Write a critter class FlyTrap:

Method Behavior

constructor public FlyTrap()

getColor red

getMove always infect if an enemy is in front
otherwise turn left

toString "T"

24

FlyTrap
public class FlyTrap extends Critter {
 public Action getMove(CritterInfo info) {
 if (info.getFront() == Neighbor.OTHER) {
 return Action.INFECT;
 } else {
 return Action.LEFT;
 }
 }

 public Color getColor() {
 return Color.RED;
 }

 public String toString() {
 return "T";
 }
}

13

25

Critter exercise: Blinker

Method Behavior

constructor public Blinker()

getColor alternates between red and green

getMove always infects

toString "X"

  NOTE: The simulator calls the getMove method once per
turn. All other methods may be called more than once per
turn.

26

Ideas for state
  You must not only have the right state, but update that

state properly when relevant actions occur.

  Counting is helpful:
  How many total moves has this animal made?

14

27

Keeping state
  How can a critter alternate colors?

public Color getColor () {
 boolean isRed = false;
 while (true) {
 isRed = !isRed;
 if (isRed) {
 return Color.RED
 } else {
 return Color.GREEN;
 }
 }
}

28

Blinker
import java.awt.*;

public class Blinker extends Critter {
 private int moves; // total moves made by this Critter

 public Action getMove(CritterInfo info) {
 moves++;
 return Action.INFECT;
 }

 public Color getColor() {
 if (moves % 2 == 0) {
 return Color.GREEN;
 } else {
 return Color.RED;
 }
 }

 public String toString() {
 return "X";
 }
}

15

29

Testing critters
  Focus on one specific critter

  Only spawn 1 animal of the species being debugged

  Make sure your fields update properly
  Use println statements to see field values
  Or use the debugger

  Look at the behavior one step at a time
  Use "step" rather than "start"

  Use "debug" to see what direction critters are facing

30

Critter exercise: Snake
Method Behavior

constructor public Snake()

getColor black

getMove hop if possible
otherwise turn around

toString "S"

16

31

Snake solution
import java.awt.*;

public class Snake extends Critter {
 boolean turning;

 public Snake() {
 turning = false;
 }

 public Action getMove(CritterInfo info) {
 if (turning) {
 turning = false;
 return Action.LEFT;
 } else if (info.getFront() == Neighbor.EMPTY) {
 return Action.HOP;
 } else {
 turning = true;
 return Action.LEFT;
 }
 }

 public Color getColor() {
 return Color.BLACK;
 }

 public String toString() {
 return "S";
 }
}

