
5/22/11

1

Building Java Programs

Chapter 9
Lecture 9-1: Inheritance

reading: 9.1

2

Law firm employee analogy
  common rules: hours, vacation, benefits, regulations ...

  all employees attend a common orientation to learn general
company rules

  each employee receives a 20-page manual of common rules

  each subdivision also has specific rules:
  employee receives a smaller (1-3 page) manual of these rules
  smaller manual adds some new rules and also changes some

rules from the large manual

5/22/11

2

3

Separating behavior
  Why not just have a 22 page Lawyer manual, a 21-page

Secretary manual, a 23-page Marketer manual, etc.?

  Some advantages of the separate manuals:
  maintenance: Only one update if a common rule changes.
  locality: Quick discovery of all rules specific to lawyers.

  Some key ideas from this example:
  General rules are useful (the 20-page manual).
  Specific rules that may override general ones are also useful.

4

Is-a relationships, hierarchies
  is-a relationship: A hierarchical connection where one

category can be treated as a specialized version of another.
  every marketer is an employee
  every legal secretary is a secretary

  inheritance hierarchy: A set of classes connected by is-a
relationships that can share common code.

5/22/11

3

5

Employee regulations
  Consider the following employee regulations:

  Employees work 40 hours / week.
  Employees make $40,000 per year, except legal secretaries who

make $5,000 more ($45,000 total), and marketers who make
$10,000 more ($50,000 total).

  Employees have 10 days of paid vacation per year, except lawyers
who get an extra week (a total of 15 days).

  Employees should use a yellow form to apply for leave, except for
lawyers who use a pink form.

  Each type of employee has some unique behavior:
  Lawyers know how to sue.
  Marketers know how to advertise.
  Secretaries know how to take dictation.
  Legal secretaries know how to prepare legal documents.

6

An Employee class
// A class to represent employees in general (20-page manual).
public class Employee {
 public int getHours() {
 return 40; // works 40 hours / week
 }

 public double getSalary() {
 return 40000.0; // $40,000.00 / year
 }

 public int getVacationDays() {
 return 10; // 2 weeks' paid vacation
 }

 public String getVacationForm() {
 return "yellow"; // use the yellow form
 }
}

  Exercise: Implement class Secretary, based on the
previous employee regulations. (Secretaries can take
dictation.)

5/22/11

4

7

Redundant Secretary class
// A redundant class to represent secretaries.
public class Secretary {
 public int getHours() {
 return 40; // works 40 hours / week
 }

 public double getSalary() {
 return 40000.0; // $40,000.00 / year
 }

 public int getVacationDays() {
 return 10; // 2 weeks' paid vacation
 }

 public String getVacationForm() {
 return "yellow"; // use the yellow form
 }

 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);
 }
}

8

Desire for code-sharing
•  takeDictation is the only unique behavior in Secretary.

•  We'd like to be able to say:
// A class to represent secretaries.
public class Secretary {
 <copy all the contents from the Employee class>

 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);
 }
}

5/22/11

5

9

Inheritance
  inheritance: A way to form new classes based on existing

classes, taking on their attributes/behavior.
  a way to group related classes
  a way to share code between two or more classes

  One class can extend another, absorbing its data/behavior.
  superclass: The parent class that is being extended.
  subclass: The child class that extends the superclass and

inherits its behavior.
  Subclass gets a copy of every field and method from superclass

10

Inheritance syntax
public class <name> extends <superclass> {

Example:

 public class Secretary extends Employee {
 ...

 }

  By extending Employee, each Secretary object now:
  receives a getHours, getSalary, getVacationDays, and
getVacationForm method automatically

  can be treated as an Employee by client code (seen later)

5/22/11

6

11

Improved Secretary code
// A class to represent secretaries.
public class Secretary extends Employee {
 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);
 }
}

  We only write the parts unique to each type.
  Secretary inherits getHours, getSalary, getVacationDays,

and getVacationForm methods from Employee.
  Secretary adds the takeDictation method.

12

Implementing Lawyer
  Consider the following lawyer regulations:

  Lawyers get an extra week of paid vacation (a total of 3).
  Lawyers use a pink form when applying for vacation leave.
  Lawyers have some unique behavior: they know how to sue.

  Problem: We want lawyers to inherit most behavior from
employee, but we want to replace parts with new behavior.

5/22/11

7

13

Overriding methods
  override: To write a new version of a method in a subclass

that replaces the superclass's version.
  No special syntax required to override a superclass method.

Just write a new version of it in the subclass.

 public class Lawyer extends Employee {
 // overrides getVacationForm method in Employee class
 public String getVacationForm() {
 return "pink";
 }
 ...
 }

  Exercise: Complete the Lawyer class.
  (3 weeks vacation, pink vacation form, can sue)

14

Lawyer class
// A class to represent lawyers.
public class Lawyer extends Employee {
 // overrides getVacationForm from Employee class
 public String getVacationForm() {
 return "pink";
 }

 // overrides getVacationDays from Employee class
 public int getVacationDays() {
 return 15; // 3 weeks vacation
 }

 public void sue() {
 System.out.println("I'll see you in court!");
 }
}

•  Exercise: Complete the Marketer class. Marketers make
$10,000 extra ($50,000 total) and know how to advertise.

5/22/11

8

15

Marketer class
// A class to represent marketers.
public class Marketer extends Employee {
 public void advertise() {
 System.out.println("Act now while supplies last!");
 }

 public double getSalary() {
 return 50000.0; // $50,000.00 / year
 }
}

16

Levels of inheritance
  Multiple levels of inheritance in a hierarchy are allowed.

  Example: A legal secretary is the same as a regular secretary
but makes more money ($45,000) and can file legal briefs.

 public class LegalSecretary extends Secretary {
 ...
 }

  Exercise: Complete the LegalSecretary class.

5/22/11

9

17

LegalSecretary class
// A class to represent legal secretaries.
public class LegalSecretary extends Secretary {
 public void fileLegalBriefs() {
 System.out.println("I could file all day!");
 }

 public double getSalary() {
 return 45000.0; // $45,000.00 / year
 }
}

18

Changes to common behavior
  Imagine a company-wide change affecting all employees.

Example: Everyone is given a $10,000 raise due to inflation.
  The base employee salary is now $50,000.
  Legal secretaries now make $55,000.
  Marketers now make $60,000.

  We must modify our code to reflect this policy change.

5/22/11

10

19

Modifying the superclass
// A class to represent employees in general (20-page manual).
public class Employee {
 public int getHours() {
 return 40; // works 40 hours / week
 }

 public double getSalary() {
 return 50000.0; // $50,000.00 / year
 }

 ...
}

  Are we finished?

  The Employee subclasses are still incorrect.
  They have overridden getSalary to return other values.

20

An unsatisfactory solution
public class LegalSecretary extends Secretary {
 public double getSalary() {
 return 55000.0;
 }
 ...
}

public class Marketer extends Employee {
 public double getSalary() {
 return 60000.0;
 }
 ...
}

  Problem: The subclasses' salaries are based on the
Employee salary, but the getSalary code does not reflect
this.

5/22/11

11

21

Calling overridden methods
•  Subclasses can call overridden methods with super

 super.<method>(<parameters>)

•  Example:

 public class LegalSecretary extends Secretary {
 public double getSalary() {
 double baseSalary = super.getSalary();
 return baseSalary + 5000.0;
 }
 ...
 }

•  Exercise: Modify Lawyer and Marketer to use super.

22

Improved subclasses
public class Lawyer extends Employee {
 public String getVacationForm() {
 return "pink";
 }

 public int getVacationDays() {
 return super.getVacationDays() + 5;
 }

 public void sue() {
 System.out.println("I'll see you in court!");
 }
}

public class Marketer extends Employee {
 public void advertise() {
 System.out.println("Act now while supplies last!");
 }

 public double getSalary() {
 return super.getSalary() + 10000.0;
 }
}

