RSA Encryption

Some basic terminology

- Alice wants to send a secret message to Bob
- Eve is eavesdropping
- Cryptographers tell Alice and Bob how to encode their messages
- Cryptanalysts help Eve to break the code
- Historic battle between the cryptographers and the cryptanalysts that continues today

Start with an Algorithm

Caesar cipher (substitution cipher): ABCDEFGHIJKLMNOPQRSTUVWXYZ GHIJKLMNOPQRSTUVWXYZABCDEF

Then add a secret key

- Both parties know that the secret word is "victory":

ABCDEFGHIJKLMNOPQRSTUVWXYZ
VICTORYABDEFGHJKLMNPQSUWXZ

- "state of the art" for hundreds of years
- Gave birth to cryptanalysis first in the Muslim world, later in Europe

Cryptographers vs Cryptanalysts

- A battle that continues today
- Cryptographers try to devise more clever algorithms and keys
- Cryptanalysts search for vulnerabilities
- Early cryptanalysts were linguists:
- frequency analysis
- properties of letters

Public Key Encryption

- Proposed by Diffie, Hellman, Merkle
- First big idea: use a function that cannot be reversed (a humpty dumpty function): Alice tells Bob a function to apply using a public key, and Eve can't compute the inverse
- Second big idea: use asymmetric keys (sender and receiver use different keys): Alice has a private key to compute the inverse
- Key benefit: doesn't require the sharing of a secret key

RSA Encryption

- Named for Ron Rivest, Adi Shamir, and Leonard Adleman
- Invented in 1977, still the premier approach
- Based on Fermat's Little Theorem: $a^{p-1} \equiv 1(\bmod p)$ for prime $p, \operatorname{gcd}(a, p)=1$
- Slight variation:
$a^{(p-1)(q-1)} \equiv 1(\bmod p q)$ for distinct primes p and $q, \operatorname{gcd}(a, p q)=1$
- Requires large primes (100+ digit primes)

Example of RSA

- Pick two primes p and q , compute $\mathrm{n}=\mathrm{p} \times \mathrm{q}$
- Pick two numbers e and d, such that:

$$
e \times d=k(p-1)(q-1)+1 \text { (for some } k)
$$

- Publish n and e (public key), encode with: (original message) ${ }^{\mathrm{e}}$ mod n
- Keep d, p and q secret (private key), decode with:
(encoded message) ${ }^{d}$ mod n

Why does it work?

- Original message is carried to the e power, then to the d power:
$\left(m s g^{e}\right)^{d}=m s g^{e} d$
- Remember how we picked e and d:
$\mathrm{msg}^{\text {ed }}=\mathrm{msg}^{\mathrm{k}(p-1)(q-1)+1}$
- Apply some simple algebra:
$\mathrm{msg}^{\text {ed }}=\left(\mathrm{msg}^{(\mathrm{p}-1)(\mathrm{q}-1)}\right)^{\mathrm{k}} \times \mathrm{msg}^{1}$
- Applying Fermat's Little Theorem:
$\mathrm{msg}^{\text {ed }}=(1)^{\mathrm{k}} \times \mathrm{msg}^{1}=\mathrm{msg}$

Politics of Cryptography

- British actually discovered RSA first but kept it secret
- Phil Zimmerman tried to bring cryptography to the masses with PGP and ended up being investigated as an arms dealer by the FBI and a grand jury
- The NSA hires more mathematicians than any other organization

Exploring further

- Simon Singh, The Code Book
- RSA Factoring Challenge (unfortunately the prizes have been withdrawn)
- Shor's algorithm would break RSA if only we had a quantum computer
- Java's BigInteger: isProbablePrime, nextProbablePrime, modPow
- Free online chapter:
http://www.bitsbook.com/excerpts/chapter5/

