
Copyright 2008 by Pearson Education

Array traversals,
text processing

reading: 7.1, 4.4

self-check: Ch. 7 #8, Ch. 4 #19-23

Copyright 2008 by Pearson Education
2

Array traversals
 traversal: An examination of each element of an array.

for (int i = 0; i < array.length; i++) {

do something with array[i];

}

 Examples:

 printing the elements

 searching for a specific value

 rearranging the elements

 computing the sum, product, etc.

Copyright 2008 by Pearson Education
3

Quick array initialization
type[] name = {value, value, … value};

 Example:

int[] numbers = {12, 49, -2, 26, 5, 17, -6};

 Useful when you know what the array's elements will be

 The compiler figures out the size by counting the values

index 0 1 2 3 4 5 6

value 12 49 -2 26 5 17 -6

Copyright 2008 by Pearson Education
4

"Array mystery" problem
 What element values are stored in the following array?

int[] a = {1, 7, 5, 6, 4, 14, 11};

for (int i = 0; i < a.length - 1; i++) {

if (a[i] > a[i + 1]) {

a[i + 1] = a[i + 1] * 2;

}

}

index 0 1 2 3 4 5 6

value

index 0 1 2 3 4 5 6

value 1 7 10 12 8 14 22

Copyright 2008 by Pearson Education
5

Text processing
 text processing: Examining, editing, formatting text.

 Often involves for loops to examine each letter of a String.

 Count the number of times the letter 's' occurs in a file.

 Find which letter is most common in a file.

 Count A, C, T and Gs in Strings representing DNA strands.

 Strings are represented internally as arrays of char.

String str = "Ali G.";

index 0 1 2 3 4 5

value 'A' 'l' 'i' ' ' 'G' '.'

Copyright 2008 by Pearson Education
6

Recall: type char

 char: A primitive type representing a single character.

 Values are surrounded with apostrophes: 'a' or '4' or '\n'

 Access a string's characters with its charAt method.

String word = console.next();

char firstLetter = word.charAt(0);

if (firstLetter == 'c') {

System.out.println("That's good enough for me!");

}

 Use for loops to examine each character.

String coolMajor = "CSE";

for (int i = 0; i < coolMajor.length(); i++) {

System.out.println(coolMajor.charAt(i));

}

Copyright 2008 by Pearson Education
7

Text processing question
 Write a method tallyVotes that accepts a String

parameter and prints the number of McCain, Obama and
independent voters.

// (M)cCain, (O)bama, (I)ndependent

String voteText = "MOOOOOOMMMMMOOOOOOMOMMIMOMMIMOMMIO";

tallyVotes(voteText);

 Output:

Votes: [16, 14, 3]

Copyright 2008 by Pearson Education
8

Arrays.toString

 Arrays.toString accepts an array as a parameter and
returns a String representation of its elements.

int[] e = {0, 2, 4, 6, 8};

e[1] = e[3] + e[4];

System.out.println("e is " + Arrays.toString(e));

Output:

e is [0, 14, 4, 6, 8]

 Must import java.util.*;

Copyright 2008 by Pearson Education
9

The Arrays class

 Class Arrays in package java.util has useful static

methods for manipulating arrays:

Method name Description

binarySearch(array, value) returns the index of the given value
in a sorted array (< 0 if not found)

equals(array1, array2) returns true if the two arrays

contain the same elements in the
same order

fill(array, value) sets every element in the array to
have the given value

sort(array) arranges the elements in the array
into ascending order

toString(array) returns a string representing the
array, such as "[10, 30, 17]"

Copyright 2008 by Pearson Education
10

Text processing answer
public static int[] tallyVotes(String votes) {

int[] tallies = new int[3]; // M -> 0, O -> 1, I -> 2

for(int i = 0; i < votes.length(); i++) {

if(votes.charAt(i) == 'M') {

tallies[0]++;

} else if(votes.charAt(i) == 'O') {

tallies[1]++;

} else { // votes.charAt(i) == 'I'

tallies[2]++;

}

}

System.out.println("Votes: " + Arrays.toString(tally));;

}

Copyright 2008 by Pearson Education
11

Arrays as parameters
and returns;

values vs. references

reading: 7.1, 3.3, 4.3

self-checks: Ch. 7 #5, 8, 9

exercises: Ch. 7 #1-10

11

Copyright 2008 by Pearson Education
12

Swapping values
public static void main(String[] args) {

int a = 7;

int b = 35;

// swap a with b (incorrectly)

a = b;

b = a;

System.out.println(a + " " + b);

}

 What is wrong with this code? What is its output?

 The red code should be replaced with:

int temp = a;

a = b;

b = temp;

Copyright 2008 by Pearson Education
13

A swap method?

 Does the following swap method work? Why or why not?

public static void main(String[] args) {

int a = 7;

int b = 35;

// swap a with b

swap(a, b);

System.out.println(a + " " + b);

}

public static void swap(int a, int b) {

int temp = a;

a = b;

b = temp;

}

Copyright 2008 by Pearson Education
14

Value semantics (primitives)

 value semantics: Behavior where values are copied when

assigned to each other or passed as parameters.

 When one primitive variable is assigned to another,
its value is copied.

 Modifying the value of one variable does not affect others.

int x = 5;

int y = x; // x = 5, y = 5

y = 17; // x = 5, y = 17

x = 8; // x = 8, y = 17

x

y

Copyright 2008 by Pearson Education
15

Reference semantics (objects)

 reference semantics: Behavior where variables actually
store the address of an object in memory.

 When one reference variable is assigned to another, the object
is not copied; both variables refer to the same object.

 Modifying the value of one variable will affect others.

int[] a1 = {4, 5, 2, 12, 14, 14, 9};

int[] a2 = a1; // refer to same array as a1

a2[0] = 7;

System.out.println(a1[0]); // 7

index 0 1 2 3 4 5 6

value 4 5 2 12 14 14 9

index 0 1 2 3 4 5 6

value 7 5 2 12 14 14 9

a1

a2

Copyright 2008 by Pearson Education
16

References and objects
 Arrays and objects use reference semantics. Why?

 efficiency. Copying large objects slows down a program.

 sharing. It's useful to share an object's data among methods.

DrawingPanel panel1 = new DrawingPanel(80, 50);

DrawingPanel panel2 = panel1; // same window

panel2.setBackground(Color.CYAN);

panel1

panel2

Copyright 2008 by Pearson Education
17

Objects as parameters
 When an object is passed as a parameter, the object is not

copied. The parameter refers to the same object.

 If the parameter is modified, it will affect the original object.

public static void main(String[] args) {

DrawingPanel window = new DrawingPanel(80, 50);

window.setBackground(Color.YELLOW);

example(window);

}

public static void example(DrawingPanel panel) {

panel.setBackground(Color.CYAN);

}

panel

window

Copyright 2008 by Pearson Education
18

Arrays as parameters
 Declaration:

public static type methodName(type[] name) {

 Example:

public static double average(int[] numbers) {

 Call:
methodName(arrayName);

 Example:

int[] scores = {13, 17, 12, 15, 11};

double avg = average(scores);

