
1

Building Java Programs
Chapter 5

Lecture 5-2: Random Numbers

reading: 5.1, 5.6

2

http://xkcd.com/221/

3

Randomness
�  Lack of predictability: don't know what's coming next

�  Random process: outcomes do not follow a deterministic
pattern (math, statistics, probability)

�  Lack of bias or correlation (statistics)

�  Relevant in lots of fields
�  Genetic mutations (biology)
�  Quantum processes (physics)
�  Random walk hypothesis (finance)
�  Cryptography (computer science)
�  Game theory (mathematics)
�  Determinism (religion)

4

Pseudo-Randomness
�  Computers generate numbers in a predictable way using a

mathematical formula

�  Parameters may include current time, mouse position
�  In practice, hard to predict or replicate

�  True randomness uses natural processes
�  Atmospheric noise (http://www.random.org/)
�  Lava lamps (patent #5732138)
�  Radioactive decay

5

The Random class
�  A Random object generates pseudo-random numbers.

�  Class Random is found in the java.util package.
 import java.util.*;

�  Example:

 Random rand = new Random();
 int randomNumber = rand.nextInt(10); // 0-9

Method name Description
nextInt() returns a random integer
nextInt(max) returns a random integer in the range [0, max)

in other words, 0 to max-1 inclusive
nextDouble() returns a random real number in the range [0.0, 1.0)

6

Generating random numbers
�  Common usage: to get a random number from 1 to N

 int n = rand.nextInt(20) + 1; // 1-20 inclusive

�  To get a number in arbitrary range [min, max] inclusive:

 name.nextInt(size of range) + min

�  Where size of range is (max - min + 1)

�  Example: A random integer between 4 and 10 inclusive:

 int n = rand.nextInt(7) + 4;

7

Random questions
�  Given the following declaration, how would you get:

 Random rand = new Random();

�  A random number between 1 and 47 inclusive?
 int random1 = rand.nextInt(47) + 1;

�  A random number between 23 and 30 inclusive?
 int random2 = rand.nextInt(8) + 23;

�  A random even number between 4 and 12 inclusive?
 int random3 = rand.nextInt(5) * 2 + 4;

8

Random and other types
�  nextDouble method returns a double between 0.0 - 1.0

�  Example: Get a random GPA value between 1.5 and 4.0:
 double randomGpa = rand.nextDouble() * 2.5 + 1.5;

�  Any set of possible values can be mapped to integers
�  code to randomly play Rock-Paper-Scissors:

 int r = rand.nextInt(3);
 if (r == 0) {
 System.out.println("Rock");
 } else if (r == 1) {
 System.out.println("Paper");
 } else { // r == 2
 System.out.println("Scissors");
 }

9

Random question
�  Write a program that simulates rolling two 6-sided dice

until their combined result comes up as 7.

 2 + 4 = 6
 3 + 5 = 8
 5 + 6 = 11
 1 + 1 = 2
 4 + 3 = 7
 You won after 5 tries!

10

Random answer
// Rolls two dice until a sum of 7 is reached.
import java.util.*;

public class Dice {
 public static void main(String[] args) {
 Random rand = new Random();
 int tries = 0;

 int sum = 0;
 while (sum != 7) {
 // roll the dice once
 int roll1 = rand.nextInt(6) + 1;
 int roll2 = rand.nextInt(6) + 1;
 sum = roll1 + roll2;
 System.out.println(roll1 + " + " + roll2 + " = " + sum);
 tries++;
 }

 System.out.println("You won after " + tries + " tries!");
 }
}

11

Random question
�  Write a program that plays an adding game.

�  Ask user to solve random adding problems with 2-5 numbers.
�  The user gets 1 point for a correct answer, 0 for incorrect.
�  The program stops after 3 incorrect answers.

 4 + 10 + 3 + 10 = 27
 9 + 2 = 11
 8 + 6 + 7 + 9 = 25
 Wrong! The answer was 30
 5 + 9 = 13
 Wrong! The answer was 14
 4 + 9 + 9 = 22
 3 + 1 + 7 + 2 = 13
 4 + 2 + 10 + 9 + 7 = 42
 Wrong! The answer was 32
 You earned 4 total points

12

Random answer
// Asks the user to do adding problems and scores them.
import java.util.*;

public class AddingGame {
 public static void main(String[] args) {
 Scanner console = new Scanner(System.in);
 Random rand = new Random();

 // play until user gets 3 wrong
 int points = 0;
 int wrong = 0;
 while (wrong < 3) {
 int result = play(console, rand); // play one game
 if (result == 0) {
 wrong++;
 } else {
 points++;
 }

 }

 System.out.println("You earned " + points + " total points.");
 }

13

Random answer 2
 ...

 // Builds one addition problem and presents it to the user.
 // Returns 1 point if you get it right, 0 if wrong.
 public static int play(Scanner console, Random rand) {
 // print the operands being added, and sum them
 int operands = rand.nextInt(4) + 2;
 int sum = rand.nextInt(10) + 1;
 System.out.print(sum);

 for (int i = 2; i <= operands; i++) {
 int n = rand.nextInt(10) + 1;
 sum += n;
 System.out.print(" + " + n);
 }
 System.out.print(" = ");

 // read user's guess and report whether it was correct
 int guess = console.nextInt();
 if (guess == sum) {
 return 1;
 } else {
 System.out.println("Wrong! The answer was " + total);
 return 0;
 }
 }
}

14

Building Java Programs
Chapter 5

Lecture 5-4: Assertions

reading: 5.5

15

Punchline to a longer comic: http://www.smbc-comics.com/index.php?db=comics&id=2362#comic

16

Logical assertions
�  assertion: A statement that is either true or false.

Examples:
�  Java was created in 1995.
�  The sky is purple.
�  23 is a prime number.
�  10 is greater than 20.
�  x divided by 2 equals 7. (depends on the value of x)

�  An assertion might be false ("The sky is purple" above), but
it is still an assertion because it is a true/false statement.

17

Reasoning about assertions
�  Suppose you have the following code:

 if (x > 3) {
 // Point A
 x--;
 } else {
 // Point B
 x++;
 // Point C
 }
 // Point D

�  What do you know about x's value at the three points?
�  Is x > 3? Always? Sometimes? Never?

18

Assertions in code
�  We can make assertions about our code and ask whether they

are true at various points in the code.
�  Valid answers are ALWAYS, NEVER, or SOMETIMES.

 System.out.print("Type a nonnegative number: ");
 double number = console.nextDouble();
 // Point A: is number < 0.0 here?

 while (number < 0.0) {
 // Point B: is number < 0.0 here?
 System.out.print("Negative; try again: ");

 number = console.nextDouble();
 // Point C: is number < 0.0 here?
 }

 // Point D: is number < 0.0 here?

(SOMETIMES)

(ALWAYS)

(SOMETIMES)

(NEVER)

19

Reasoning about assertions
�  Right after a variable is initialized, its value is known:

 int x = 3;
 // is x > 0? ALWAYS

�  In general you know nothing about parameters' values:
 public static void mystery(int a, int b) {
 // is a == 10? SOMETIMES

�  But inside an if, while, etc., you may know something:
 public static void mystery(int a, int b) {
 if (a < 0) {
 // is a == 10? NEVER
 ...
 }
 }

20

Assertions and loops
�  At the start of a loop's body, the loop's test must be true:

 while (y < 10) {
 // is y < 10? ALWAYS
 ...
 }

�  After a loop, the loop's test must be false:
 while (y < 10) {
 ...
 }
 // is y < 10? NEVER

�  Inside a loop's body, the loop's test may become false:
 while (y < 10) {
 y++;
 // is y < 10? SOMETIMES
 }

21

"Sometimes"
�  Things that cause a variable's value to be unknown

(often leads to "sometimes" answers):

�  reading from a Scanner
�  reading a number from a Random object
�  a parameter's initial value to a method

�  If you can reach a part of the program both with the
answer being "yes" and the answer being "no", then the
correct answer is "sometimes".

�  If you're unsure, "Sometimes" is a good guess.

22

Assertion example 1
public static void mystery(int x, int y) {
 int z = 0;

 // Point A

 while (x >= y) {
 // Point B
 x = x - y;
 z++;

 if (x != y) {
 // Point C
 z = z * 2;
 }

 // Point D

 }

 // Point E
 System.out.println(z);
}

x < y x == y z == 0

Point A

Point B

Point C

Point D

Point E

SOMETIMES SOMETIMES ALWAYS

NEVER SOMETIMES SOMETIMES

SOMETIMES NEVER NEVER

SOMETIMES SOMETIMES NEVER

ALWAYS NEVER SOMETIMES

Which of the following assertions are
true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

23

Assertion example 2
public static int mystery(Scanner console) {
 int prev = 0;
 int count = 0;
 int next = console.nextInt();

 // Point A

 while (next != 0) {
 // Point B

 if (next == prev) {
 // Point C

 count++;
 }

 prev = next;
 next = console.nextInt();

 // Point D

 }

 // Point E

 return count;
}

next == 0 prev == 0 next == prev

Point A

Point B

Point C

Point D

Point E

SOMETIMES ALWAYS SOMETIMES

NEVER SOMETIMES SOMETIMES

NEVER NEVER ALWAYS

SOMETIMES NEVER SOMETIMES

ALWAYS SOMETIMES SOMETIMES

Which of the following assertions are
true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

24

Assertion example 3
// Assumes y >= 0, and returns x^y
public static int pow(int x, int y) {
 int prod = 1;

 // Point A
 while (y > 0) {
 // Point B
 if (y % 2 == 0) {
 // Point C
 x = x * x;
 y = y / 2;
 // Point D
 } else {
 // Point E
 prod = prod * x;
 y--;
 // Point F
 }
 }
 // Point G
 return prod;
}

y > 0 y % 2 == 0

Point A

Point B

Point C

Point D

Point E

Point F

Point G

Which of the following assertions are
true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

y > 0 y % 2 == 0

Point A SOMETIMES SOMETIMES

Point B ALWAYS SOMETIMES

Point C ALWAYS ALWAYS

Point D ALWAYS SOMETIMES

Point E ALWAYS NEVER

Point F SOMETIMES ALWAYS

Point G NEVER ALWAYS

