CSE 142, Autumn 2011
Final Exam
(key at end)

1. Array Mystery
Consider the following method:

public static void mystery(int[] a) {
for (int 1 = 1; 1 < a.length - 1; i++) {
alil = (ali - 11 + ali + 11) / 2;
}
}

Indicate in the right-hand column what values would be stored in the array after the method mystery executes if the
array in the left-hand column is passed as its parameter.

Original Contents of Array Final Contents of Array

int[] al = {1, 1, 3}
mystery(al);

int[] a2 = {2, 1, 2, 4};
mystery(az2);

int[] a3 = {6, 13, 0, 3, 7};
mystery (a3) ;

int[] a4 = {-1, 6, 3, 5, =-3};
mystery(a4);

int[] a5 = {7, 2, 3, 1, -3, 12};
mystery (ab) ;

1of18

2. Reference Semantics Mystery
Write the output of the following program below, as it would appear on the console.

public class ReferenceMystery {
public static void main (String[] args) {

String name = "Janet";
int money = 30;
Account a = new Account (name, money);

mystery (name, money, a);
System.out.println(name + ", " + money + ", " + a);

money = money + 10;
a.name = "Billy";

mystery (name, money, a);
System.out.println(name + ", " + money + ", " + a);

public static void mystery(String name, int money, Account a) {
a.money++;
name = "Susan";
System.out.println(name + ", " + money + ", " + a);

public class Account {
String name;
int money;

public Account (String name, int money) {
this.name = name;
this.money = money;

public String toString () {
return name + ": $" + money;

}

20f18

3. Inheritance Mystery

Assume that the following four classes have been defined:

public class Tulip extends Rose { public class Rose extends Lily {
public void methodl () { public String toString () {
System.out.print ("Tulip 1 "); return "Rose " + super.toString();

} }
} }

public class Violet { public class Lily extends Violet {

public void methodl () { public void methodl () {
System.out.print ("Violet 1 "); super.methodl () ;

} System.out.print ("Lily 1 ");

}

public void method2 () {
System.out.print ("Violet 2 "); public void method2 () {

} System.out.print ("Lily 2 ");

methodl () ;

public String toString () { }
return "Violet";

} public String toString() {

} return "Lily";

}

Given the classes above, what output is produced by the following code?

Violet[] pretty = { new Tulip(), new Lily (), new Violet (), new Rose() };

for (int 1 = 0; 1 < pretty.length; i++) {
System.out.println (pretty[i]);
pretty[i] .methodl () ;
System.out.println () ;
pretty[i] .method2 () ;
System.out.println () ;
System.out.println ()

’

30f18

4. File Processing
Write a static method named groceries that accepts as its parameter a Scanner for an input file. The data in the

Scanner represents grocery items purchased along with their price and their discount category. Your method should
compute and return a double representing the total cost of the grocery items.

Each item is represented by three tokens starting with the name of the item (a single word) followed by its discount
category ("red", "blue" or "none") followed by its full price. The discount category may include capitalization. The
different discount options are:

* red: 10% off full price
* Dblue: 25% off full price
* none: full price

For example, given a Scanner named input referring to an input file that contains the following text:

avocado RED 1 Dblueberries none 5 milk blue
2.00 cream red 1.00 cereal None 1.29

The call on groceries (input) should return 9.59.

The avocado will cost $0.9 because a discount of 10% off of §1 is $0.1. Blueberries cost the full price of $§5. Milk
will cost $1.50 because it receives a discount of 25% off of $2.00. Cream will cost $0.9 and cereal will cost the full
price of $1.29. The total is 0.9 +5 + 1.5+ .9 + 1.29 = 9.59.

Notice that the input may span multiple lines and may have different spacing between tokens. The entire file
represents a single grocery bill.

You may assume that the input file exists and has the format described above. The file will always contain at least
one grocery item and will always contain a number of tokens that is a multiple of 3. The second token in every triple
will always be one of "red", "blue" or "none".

4 0f 18

5. File Processing

Write a static method named mostUnique that accepts as its parameter a Scanner for an input file. The data in the
Scanner represents integer quiz scores separated by spaces. Each class period is on its own line and contains a
different number of students. Your method should return the highest number of unique scores given in a single class
period. The method should also print the number of unique scores given in each period.

On a given line, repeated scores are always next to each other.

For example, given a Scanner named input referring to an input file that contains the following text:

10 10 10 9 9 8 3
338109 7766
419 910 7 7

10 10 10 10

The call on mostUnique (input) should return 6 and generate the following output:

Period 1: 4 unique scores
Period 2: 6 unique scores
Period 3: 5 unique scores
Period 4: 1 unique scores

On the first line, there are 4 unique scores: 10, 9, 8 and 3. The second line contains 6 unique scores: 3, 8, 10, 9, 7 and
6. The third line contains 5 unique scores: 4, 1, 9, 10 and 7. The fourth line only has one unique score: 10. The value
returned is 6 because it is the highest number of unique scores given in a class period.

Assume that the file exists, that it contains at least one line of data and that each line contains at least one score.

50f18

6. Array Programming

Write a static method named repeatedSequence that accepts two arrays of integers al and a2 as parameters and
returns true if a2 is composed entirely of repetitions of a/ and false otherwise. For example, if al/ stores the
elements {2, 1, 3} and a2 stores the elements {2, 1, 3, 2, 1, 3, 2, 1, 3}, the method would return
true.

If the length of a2 is not a multiple of the length of a/, your method should return false. You may assume that both

arrays passed to your method will have a length of at least 1.

The following table shows some calls to your method and their expected results:

Arrays Returned Value

int[] al = {2, 1}; repeatedSequence (al, a2) returns true
int[] a2 = {2, 1, 2, 1, 2, 1};

int[] a3 = {2, 1, 3}; repeatedSequence (a3, a4) returns false
int[] a4 = {2, 1, 3, 2, 1, 3, 2};

int[] a5 = {23}; repeatedSequence (a5, a6) returns true
int[] a6 = {23, 23, 23, 23};

%nt[] al = {5, 6, 7, 8}; repeatedSequence (a7, a8) returns true
int[] a8 = {5, 6, 7, 8};

int[] a9 = {5, 6}; repeatedSequence (a9, al0) returns false
int[] al0 = {5, 6, 7, 5, 6, 5};

Do not modify the contents of the arrays passed to your method as parameters.

60f 18

7. Array Programming

Write a static method named evenodd that accepts an array of integers as a parameter and rearranges the array’s
elements so that all of its odd elements are in positions with odd-numbered indexes and all of its even elements are in
positions with even-numbered indexes. The array passed in will always contain exactly as many even values as odd
values. The exact order of the elements in the array after your method is run on it is unimportant as long as its content
alternates between even and odd values, starting with even ([even value, odd value, even value, odd value...]).

For example, if your method were passed the following array:

int[] al = {5, 6, 3, 3, 2, 5, 2, 6};
evenOdd (al) ;

One acceptable ordering of the elements after the call would be:
[6 4 5 4 2 4 3 4 2 4 5 4 6 4 3 J

The even-numbered indexes of this array are 0, 2, 4, 6 and each of these positions contains an even integer. The odd-
numbered indexes of this array are 1, 3, 5, 7 and each of these positions contains an odd integer.

You may not create an additional array or use a String to solve this problem.

7 of 18

8. Critters
Write a Critter class Grasshopper along with its movement and fighting behavior. All unspecified aspects of
Grasshopper use the default behavior. Write the complete class with any fields, constructors, etc. necessary.

A Grasshopper sits still until getting into a fight. Once it fights, it celebrates its victory by doing a "hop". A "hop"
consists of moving north a certain number of times, then south the same number of times, then west one time. The
hops start with a height of 1 (one move north, then one move south) but each subsequent fight causes the next hop to
be larger by one. The second hop is 2 moves north, 2 moves south, then 1 move west. After finishing the hop, the
Grasshopper sits idle again until it gets into another fight.

If a Grasshopper is sitting still, it always fights with Attack.ROAR. If a Grasshopper gets into a fight in the
middle of a hop (while it is not sitting still), it always returns Attack.FORFEIT, causing it to lose the fight.

Here is an example sequence of moves for one Grasshopper:

CCCCC (fights) NSWCCC (fights) NNSSWCCCCCCC (fights) NNNSSSWCC (fights) NNNNSS (fights and dies)

8 of 18

9. Classes and Objects

Suppose you have the class Date at right. (This is the same Date // this class ignores leap years
class from your homework. Only the headings are shown.) public class Date {
private int month;

Write an instance method rewind to be placed inside the Date private int day;

class. The method accepts an integer representing a number of
days as a parameter and modifies the Date's state by moving it // constructs the given month/day
backward in time by that many days. You may assume that the public Date(int m, int d)

value passed is non-negative, but it could be very large, causing

the Date to wrap into previous month(s) or year(s). // returns the day/month fields

public int getDay ()
For example, if these Date objects are declared in client code: public int getMonth ()

Date janl0 = new Date(1l, 10);
Date sepl9 = new Date (9, 19);
Date nov30 = new Date (11, 30);

The following calls should change their state as indicated: // compares dates (true if same)
public boolean equals(Date d)

// # of days in date's month
public int daysInMonth ()

sepl9.rewind (0) ; // 9/19

sepl9.rewind (5); // 9/14 // modifies this date's state
sepl9.rewind (15) ; // 8/30 // forward in time by 1 day,
janl0.rewind(11) ; // 12/30 (of last year) // wrapping month/year if needed
nov30.rewind (365 + 364); // 12/1 (two years ago) public void nextDay ()

// set month/date to given values
public void setDate(int m, int d)

// your method would go here

90of 18

Solutions

1. Array mystery.

2. Reference mystery.

Susan, 30, Janet: $31
Janet, 30, Janet: $31
Susan, 40, Billy: $32
Janet, 40, Billy: $32

3. Inheritance mystery.

Rose Lily
Tulip 1
Lily 2 Tulip 1

Lily
Violet 1 Lily 1
Lily 2 Violet 1 Lily 1

Violet
Violet 1
Violet 2

Rose Lily
Violet 1 Lily 1
Lily 2 Violet 1 Lily 1

4. Groceries, 10 points. Two of many possible solutions follow:

// reads price in each branch,

3 counters,

public static double groceries (Scanner s)

double red = 0;
double blue = 0;
double none = 0;
while (s.hasNext())
s.next () ;

String sale = s.next();

if (sale.equalsIgnoreCase ("red"))
red += s.nextDouble() ;

} else if (sale.equalsIgnoreCase("blue"))

blue += s.nextDouble():;

} else {

none += s.nextDouble ()

}
}

return red * .90 + blue *

.75 + none;

{

calculates discount at end

{

10 of 18

// reads price once before conditional, adds in each branch
public static double groceries(Scanner s) {
double total = 0;

while (s.hasNext()) {

s.next ();

String sale = s.next();

double value = s.nextDouble ()

if (sale.equalsIgnoreCase ("red")) {
total += value * .90;

} else if (sale.equalsIgnoreCase ("blue")) {
total += value * .75;

} else {

total += value;

}

return total;

}

5. Most Unique, 10 points. Two of many possible solutions follow:

// fencepost solution
public static int mostUnique (Scanner fileScan) {

int most = 1;
int line = 0;
while (fileScan.hasNextLine()) {
line++;
String line = fileScan.nextLine();
Scanner lineScan = new Scanner (line);
int previous = tokens.nextInt();
int count = 1;
while (lineScan.hasNextInt()) {
int current = lineScan.nextInt();
if (previous != current) {
count++;
}
previous = current;
}
System.out.println("Period " + line + ": " 4+ count + " unique scores");
if (count > most) {
most = count;

}

return most;

}

// Math.max and -1 bootstrap solution
public static int mostUnique (Scanner input) {

int max = 1;
int line = 1;
while (input.hasNextLine()) {
Scanner tokens = new Scanner (input.nextLine());
int prev = -1;
int count = 0;
while (tokens.hasNextInt()) {

int curr = tokens.nextInt();
if (prev != curr) {
count++; }
previous = curr; }
System.out.println("Period " + line + ": " 4+ count + " unique scores");
max = Math.max (max, count);
line++; }
return max;

11 of 18

6. Repeated Sequence, 15 points. Seven of many possible solutions follow:

// "nested loops, increment outer loop by al.length" solution

public static boolean repeatedSequence(int[] al, int[] a2) {
if (a2.length % al.length != 0) {

return false;

}

for (int 1 = 0; 1 < a2.length; i += al.length) {
for (int j = 0; Jj < al.length; j++) {
if (allj] !'= a2[i + j]) {
return false;

return true;

}

// "nested loops, increment outer loop by 1, but with inner if test" solution

public static boolean repeatedSequence(int[] al, int[] a2) {
if (a2.length % al.length != 0) {

return false;

}

for (int 1 = 0; 1 < a2.length; i++) {

if (i % al.length == 0) {
for (int j = 0; j < al.length; j++) {
if (al[j] != a2[i + J1) |

return false;

return true;

}

// "outer loop divides, inner index re-multiplies" solution
public static boolean repeatedSequence(int[] al, int[] a2) {
if (a2.length / al.length * al.length != a2.length) {

return false;

}

for (int 1 = 0; 1 < a2.length / al.length; i++) {
for (int j = 0; j < al.length; j++) {
if (al[j] != a2[j + i * al.length]) {
return false;

}

return true;

// "based on smaller array" solution

public static boolean repeatedSequence(int[] al, int[] a2) {
if (a2.length % al.length != 0) {

return false;

for (int 1 = 0; 1 < al.length; i++) {

12 of 18

// "based on smaller array #2" solution
public static boolean repeatedSequence (int[]

}
//

public static boolean repeatedSequence (int[]

}
//

for (int j = 1i; j < a2.length;
if (al[i] !'= a2[j]) {
return false;

}

return true;

if (a2.length % al.length != 0) {
return false;

}

for (int 1 = 0; 1 < al.length; i++)

for (int j = 0; j < a2.length;
if (jJ % al.length == 1) {
if (alfli] '= a2[3j1) {

return false;

}

return true;

"single loop over a2" solution

if (a2.length % al.length != 0) {
return false;

for (int 1 = 0; 1 < a2.length; i++)
if (a2[i] '= al[i % al.lengthl])

return false;

}

return true;

"single loop, external variable for index"
public static boolean repeatedSequence (int[]

if (a2.length % al.length != 0) {
return false;

}

int 1 = 0;
for (int j = 0; J < a2.length; j++)
if (a2([j] !'= allil) A

return false;
}
i++;
if (i == al.length) {
i=0;
}
}

return true;

j += al.length)

13 of 18

7. Even Odd, 10 points. Six solutions of many possible follow:

// "nested for loops with mod test and swap" solution
public static void evenOdd(int[] a) {
for (int 1 = 0; 1 < a.length; i++) {
for (int j = i; j < a.length; j++) {

if (alj] $ 2 ==1 % 2) {
int temp = alil; // swap
ali] = aljl:
aljl] = temp;

// "nested for loops with LESS ELEGANT mod test and swap" solution
public static void evenOdd(int[] a) {
for (int 1 = 0; 1 < a.length; i++) {
for (int j i; j < a.length; j++) {

if (alj] $ 2 == 0 && 1 % 2 == 0 ||
alj] $ 2 == 1 &8 i & 2 == 1) {
int temp = alil; // swap
alil = aljl;
alj] = temp;

}

// "outer even-only loop, inner odd-only loop" solution

public static void evenOdd(int[] a) {
for (int 1 = 0; 1 < a.length; 1 += 2) {
if (al[i] & 2 !'= 0) {
for (int j = 1; j < a.length; j += 2) {
if (aljl 5 2 == 0) {
int temp = ali];
ali] = aljl;
aljl] = temp;

}

// "nested loops, convoluted inner tests"™ solution
public static void evenOdd(int[] a) {
for (int 1 = 0; 1 < a.length; i++) {
for (int j = 1 + 1; j < a.length; j++) {

if (1 $ 2 == 0 && ali] % == 1 && alj]l % 2 == 0) {
int temp = al[i];
alil = al3jl;
aljl] = temp;
} else if (1 $ 2 == 1 && al[i] % 2 == 0 && alj] % 2 == 1)
int temp = ali];
ali] = aljl;
aljl] = temp;

14 of 18

// "inner while loop, looking for proper index" solution

public static void evenOdd(int[] a) {
for (int 1 = 0; 1 < a.length; i++) {
if (af[i] % 2 !'= 1 % 2) {
int 3 = 1i;
while (j < a.length - 1 && a[j] % 2 !=
Jt++;
}
int temp = ali];
ali] = aljl;
aljl] = temp;

}

// "nested while loops; look for a bad even/odd value then swap them" solution

public static void evenOdd(int[] a) {

int even = 0;

int odd = 1;

while (even < a.length || odd < a.length) {
while (even < a.length && al[even] % 2 == 0)

even += 2;

}
while (odd < a.length && alodd] % 2 != 0) {

odd += 2;
}

odd < a.length) {

if (even < a.length

int temp = aleven];
aleven] = alodd];
alodd] = temp;

8. Grasshopper, 15 points. Four of many possible solutions follow:

// "two ints and a boolean" solution
public class Grasshopper extends Critter {

private boolean attacked = false;
private int height = 0;

private int moves = 0;

public Direction getMove () {

if (lattacked) {
return Direction.CENTER;

moves++;
if (moves <= height) {
return Direction.NORTH;
} else if (moves <= 2 * height) {
return Direction.SOUTH;
} else {
moves = 0;
attacked = false;
return Direction.WEST;

}

public Attack fight (String opponent) {
if (moves == 0) {

15 of 18

attacked = true; // sitting idle; wants to fight
height++;
return Attack.ROAR;
} else {
return Attack.FORFEIT; // in motion; forfeit

}

// "just two ints" solution
public class Grasshopper extends Critter {

private int max = 0;

private int move = 0;

public Direction getMove () {
if (move == 0) {

return Direction.CENTER;
} else if (move <= max) {
move++;
return Direction.NORTH;
} else if (move <= 2 * max) {
move++;
return Direction.SOUTH;
} else {
move = 0;
return Direction.WEST;

public Attack fight (String opponent) {
if (move == 0) {
move++; // idle; wants to fight
max++;
return Attack.ROAR;
}
return Attack.FORFEIT; // in motion; forfeit

}
// "separate north/south counters" solution

public class Grasshopper extends Critter {
private int hopHeight = 1;

private int north = 0;
private int south = 0;
private boolean moving = false;
public Direction getMove () {
if (!moving) {

return Direction.CENTER;
} else if (north < hopHeight) {
north++;
return Direction.NORTH;
} else if (north == hopHeight && south < hopHeight) {
south++;
return Direction.SOUTH;
} else {
north = 0;
south 0;
hopHeight++;
moving = false;
return Direction.WEST;

16 of 18

public Attack fight (String opponent) {

if (!moving) {
moving = true;
return Attack.ROAR;
} else {

return Attack.FORFEIT;

public class Grasshopper extends Critter ({
private int height = 0;
private Direction lastMove = Direction.CENTER;
private int movesInRow = 0;

public Direction getMove () {
if (lastMove == Direction.CENTER) {
return Direction.CENTER;
} else if (lastMove == Direction.WEST) {
lastMove = Direction.CENTER;
} else if (movesInRow < height) {

movesInRow++;
} else if (movesInRow == height) ({
movesInRow = 1;
if (lastMove == Direction.NORTH) {
lastMove = Direction.SOUTH;
} else if (lastMove == Direction.SOUTH) {

lastMove = Direction.WEST;

}

return lastMove;

public Attack fight (String opponent) {

if (lastMove == Direction.CENTER) {
movesInRow = 0;
height++;

lastMove = Direction.NORTH;
return Attack.ROAR;

} else {
return Attack.FORFEIT;

}
9. Rewind, 10 points. Six of many possible solutions follow:

// "enumerate 3 cases separately, set month/date exactly once" solution
public void rewind(int days) {

for (int 1 = 0; 1 < days; i++) {

if (month == 1 && day == 1) {
month = 12;
day = 31;

} else if (day == 1) {
month--;
day = daysInMonth();

} else {
day--7;

17 of 18

// "subtract then check for wrap" solution
public void rewind(int days) {
for (int 1 = 0; 1 < days; i++) {

day--;

if (day == 0) {
month--;
if (month == 0) {

month = 12;

}
day = daysInMonth();

}

// "calls setDate" solution
public void rewind(int days) {
for (int 1 = 0; 1 < days; i++) {

if (month == 1 && day == 1) {
setDate (12, 31);
} else if (day == 1) {

setDate (month - 1, day):;

setDate (month, daysInMonth());
} else {

setDate (month, day - 1);

}

}

// "ninja, yet slow, rewinding by 1 means adding 364 days" solution
public void rewind(int days) {
for (int i = 0; i < days * 364; i++) {
nextDay () ;

}

// "ninja, rewinding by 1 means adding 364 days" solution
public void rewind(int days) {
for (int i = 0; i < 365 - days % 365; i++) {
nextDay () ;

}

// "while loop to count down the days" solution
public void rewind(int days) {
while (days > 0) {

day--;

days--;

if (day == 0) {
month--;
if (month == 0) {

month = 12;

}
day = this.daysInMonth();

18 of 18

