" Copyright 2008 by Pearson

Building Java Programs

Chapter 9
Inheritance, Polymorphism;

reading: 9.2

Education

I STARTED A TASK
FORCE TO ELIMINATE
REDUNDANCIES IN OUR
INTERNAL PROCESSES.

Em Copyright 2008 by Pearson Education

t@gmail com

S22 02001 Scott Adams, INC. Dt by Universal Uckck

The software crisis

» software engineering: The practice of developing,
designing, documenting, testing large computer
programs.

* Large-scale projects face many issues:
» programmers working together

getting code finished on time

avoiding redundant code

finding and fixing bugs

maintaining, reusing existing code

» code reuse: The practice of writing program code once
and using it in many contexts.

Copyright 2008 by Pearson Education

/:/

/ .
Law firm employee analogy

e common rules: hours, vacation, benefits, regulations ...

» all employees attend a common orientation to learn general
company rules

» each employee receives a 20-page manual of common rules

* each subdivision also has specific rules:
» employee receives a smaller (1-3 page) manual of these rules

» smaller manual adds some new rules and also changes some
rules from the large manual

Employee
20-page manual
£

Lawyer Secretary Marketer
2-page manual 1-page manual 3-page manual

T

LegalSecretary
1-page manual 4

~ Copyright 2008 by Pearson Education

J—
Separating behavior

* Why not just have a 22 page Lawyer manual, a 21-page
Secretary manual, a 23-page Marketer manual, etc.?

* Some advantages of the separate manuals:
» maintenance: Only one update if a common rule changes.
» locality: Quick discovery of all rules specific to lawyers.

* Some key ideas from this example:
» General rules are useful (the 20-page manual).
» Specific rules that may override general ones are also useful.

Copyright 2008 by Pearson Education

e

-
Is-a relationships, hierarchies

* is-a relationship: A hierarchical connection where one
category can be treated as a specialized version of
another.

» every marketer is an employee
» every legal secretary is a secretary

* inheritance hierarchy: A set of classes connected by is-
a relationships that can share common code.

Closed Figure Op9n Figure

¥\.

Copyright 2008 by Pearson Education

/ .
Employee regulations

» Consider the following employee regulations:
» Employees work 40 hours / week.

« Employees make $40,000 per year, except legal secretaries who
make $5,000 extra per year ($45,000 total), and marketers who
make $10,000 extra per year ($50,000 total).

« Employees have 2 weeks of paid vacation leave per year, except
lawyers who get an extra week (a total of 3).

« Employees should use a yellow form to apply for leave, except for
lawyers who use a pink form.

 Each type of employee has some unique behavior:
» Lawyers know how to sue.
» Marketers know how to advertise.
» Secretaries know how to take dictation.
» Legal secretaries know how to prepare legal documents.

Copyright 2008 by Pearson Education

/ 2
An Employee class

// A class to represent employees in general (20-page manual).
public class Employee {
pubiserviRib e HoUES e
return 40; // works 40 hours / week

}

public double getSalary () {
return 40000.0; // $40,000.00 / year

}

VRV SN eI MY S M P T R Y e MBI Ve i VP Y I EA i
veturny Ly // 2 weeks' paid vacation

}

DRV SN NS N T MY PRI Y ENTIO S L Y AR O e o o
return "yellow"; // use the yellow form

}

» Exercise: Implement class secretary, based on the previous
employee reqgulations. (Secretaries can take dictation.)

~ Copyright 2008 by Pearson Education

/:/

[—
Redundant Secretary

// A redundant class to represent secretaries.
prubl el asisviSanyral gy
pubiserviRib e HoUES e
return 40; // works 40 hours / week

}

public double getSalary () {
return 40000.0; // $40,000.00 / year

}

VRV SN eI MY S M P T R Y e MBI Ve i VP Y I EA i
veturny Ly // 2 weeks' paid vacation

}

DRV SN NS N T MY PRI Y ENTIO S L Y AR O e o o
return "yellow"; // use the yellow form

}

public void takeDictation(String text) {
System.out.println("Taking dictation of text:

}

~ Copyright 2008 by Pearson Education

class

waETtext)

|

;;;””—————_—__—7 . n
Desire for code-sharing

* takeDictation is the only unique behaviorin Secretary.

» We'd like to be able to say:

// A class to represent secretaries.

eyl sika el Aot s S Yaha =y ui=hayr it
copy all the contents from the Employee class;

public void takeDictation (String text) {
Syskbemyontyprintin Ot aking dicEabiron oo x s iiieactys

}

10

" Copyright 2008 by Pearson Education

/ -
Inheritance

* inheritance: A way to form new classes based on
existing classes, taking on their attributes/behavior.
» a way to group related classes
* a way to share code between two or more classes

* One class can extend another, absorbing its
data/behavior.
» superclass: The parent class that is being extended.

» subclass: The child class that extends the superclass and
inherits its behavior.
« Subclass gets a copy of every field and method from superclass

Copyright 2008 by Pearson Education

11

/ a
Inheritance syntax

public class name extends superclass {

» Example:

public class Secretary extends Employee ({

* By extending Employee, each Secretary object now:

e receives a getHours, getSalary, getVacationDays, and
getVacationForm method automatically

» can be treated as an Employee by client code (seen later)

Copyright 2008 by Pearson Education

12

|

J—
Improved secretary code

// A class to represent secretaries.
public class Secretary extends Employee {
public void takeDictation(String text) {
Sysbemyontvprinin it rakinghdichabron o et i ase N
}

* Now we only write the parts unique to each type.

» Secretaryinherits getHours, getSalary, getVacationDays,
and getVacationForm methods from Employee.

e Secretaryadds the takeDictation method.

- 13
""" Copyright 2008 by Pearson Education

/ =
Implementing Lawyer

* Consider the following lawyer regulations:
» Lawyers who get an extra week of paid vacation (a total of 3).
» Lawyers use a pink form when applying for vacation leave.
» Lawyers have some unique behavior: they know how to sue.

* Problem: We want lawyers to inherit most behavior from
employee, but we want to replace parts with new
behavior.

—— 14
' Copyright 2008 by Pearson Education

J—
Overriding methods

» override: To write a new version of a method in a
subclass that replaces the superclass's version.

» No special syntax required to override a superclass method.
Just write a new version of it in the subclass.

public class Lawyer extends Employee ({
// overrides getVacationForm method in Employee class
public String getVacationForm() ({
return "pink";

}

» Exercise: Complete the Lawyer class.
« (3 weeks vacation, pink vacation form, can sue)

e 15
: Copyright 2008 by Pearson Education

J—
Lawyer class

// A class to represent lawyers.

public class Lawyer extends Employee ({
// overrides getVacationForm from Employee class

public String getVacationForm() {
return "pink";

}

// overrides getVacationDays from Employee class

ORYE SN e IN Y S M P R Y e MBIV RV P Ve I A i
Yerrnakon // 3 weeks vacation

}

OV SN e A AN S VRSO = Y PR
System.out.println("I'll see you in court!");

}

» Exercise: Complete the Marketer class. Marketers make

$10,000 extra ($50,000 total) and know how to advertise.

"7 Copyright 2008 by Pearson Education

16

g

Marketer class

// A class to represent marketers.
public class Marketer extends Employee {
public void advertise() {
Sysbemyonbiprintlin (thcbinowiwhilevsuppliesilagh iy

}

public double getSalary () {
return 50000.0; // $50,000.00 / year

}

17

o _Copyright 2008 by Pearson Education

R m—

Levels of inheritance

» Multiple levels of inheritance in a hierarchy are allowed.

« Example: A legal secretary is the same as a regular secretary
but makes more money ($45,000) and can file legal briefs.

public class LegalSecretary extends Secretary {

» Exercise: Complete the LegalSecretary class.

18
Copyright 2008 by Pearson Education

J—
LegalSecretary Class

// A class to represent legal secretaries.
public class LegalSecretary extends Secretary {
public void filelLegalBriefs () {
Sy sbemyountiprintin it rvicoubdviilengiidgy iy

}

public double getSalary () {
return 45000.0; // $45,000.00 / year

}

o

19

" Copyright 2008 by Pearson Education

o

Interacting with the
Superclass (super)

reading: 9.2

e

g—
Changes to common behavior

* Imagine a company-wide change affecting all employees.

Example: Everyone is given a $10,000 raise due to inflation.
» The base employee salary is now $50,000.

» Legal secretaries now make $55,000.

» Marketers now make $60,000.

* We must modify our code to reflect this policy change.

21

Copyright 2008 by Pearson Education

/:/

Modifying the superclass

// A class to represent employees in general (20-page manual) .
public class Employee {
b M e sk s o = hiud S o T DR sl A)
return 40; // works 40 hours / week

}

S PNV ENTS LODVE B N S S S s R S Ao M e
return 50000.0; // $50,000.00 / year

}

}

 Are we finished?

* The Employee subclasses are still incorrect.
» They have overridden getSalary to return other values.

= 22

[y——

~ Copyright 2008 by Pearson Education

O oS

- s .
An unsatisfactory solution

public class LegalSecretary extends Secretary {

b S MW e Fe U S A T e e
return 55000.0;

}

public class Marketer extends Employee {

S Al e U G e e S
return 60000.0;

}
}

» Problem: The subclasses' salaries are based on the Employee
salary, but the getsalary code does not reflect this.

Bl e
N —_— Copyright 2008 by Pearson Education

|

Calling overridden methods

* Subclasses can call overridden methods with super

super . method (parameters)

 Example:

public class LegalSecretary extends Secretary {
public double getSalary() ({
double baseSalary = super.getSalary();
return baseSalary + 5000.0;

o Copyright 2008 by Pearson Education

/7 —

/-
Inheritance and constructors

* Imagine that we want to give employees more vacation
days the longer they've been with the company.
» For each year worked, we'll award 2 additional vacation days.

» When an Employee object is constructed, we'll pass in the
number of years the person has been with the company.

» This will require us to modify our Employee class and add
some new state and behavior.

» Exercise: Make necessary modifications to the Employee class.

e 25
L Copyright 2008 by Pearson Education

e

/ = n
Modified Employee class

public class Employee {
private int years;

public Employee (int initialYears) ({
years = initialYears;

}

public int getHours () {
return 40;

}

public double getSalary () {
st ang oy SR AN BN O e
}

pubbievintgetVacationbays:thivy
return 10 + 2 * years;

}

pub s hringugetiacationmarmiyiy
return "yellow";

26
~ Copyright 2008 by Pearson Education

R m—

Problem with constructors

* Now that we've added the constructorto the Employee
class, our subclasses do not compile. The error:

Lawyer.java:2: cannot find symbol
Swanisiedii e e el shunsibiens s u s i Dl ol Re R s T
location: class Employee

public class Lawyer extends Employee {

A

» The short explanation: Once we write a constructor (that
requires parameters) in the superclass, we must now write
constructors for our employee subclasses as well.

 The long explanation: (next slide)

2
Copyright 2008 by Pearson Education

R m—

The detailed explanation

* Constructors are not inherited.
» Subclasses don't inherit the Employee (int) constructor.

e Subclasses receive a default constructor that contains:

public Lawyer () {
super () ; // calls Employee() constructor

}

* But our Employee (int) replaces the default Employee ().

» The subclasses' default constructors are now trying to call a
non-existent default Employee constructor.

28
Copyright 2008 by Pearson Education

|

e
Calling superclass constructor

super (parameters) ;

 Example:
public class Lawyer extends Employee {
public Lawyer (1nt years) {
super (years); // calls Employee constructor

}

}

» The super call must be the first statement in the constructor.

» Exercise: Make a similar modification to the Marketerclass.

B 29
U7 Copyright 2008 by Pearson Education

|

/ m =
Modified Marketer class

// A class to represent marketers.
public class Marketer extends Employee ({
public Marketer (int years) {
super (years) ;

}

public void advertise () {
System.out.println ("Act now while supplies last!");

}

public double getSalary () {
return super.getSalary() + 10000.0;

}

» Exercise: Modify the secretarysubclass.
« Secretaries' years of employment are not tracked.

« They do not earn extra vacation for years worked.

- 30
""" Copyright 2008 by Pearson Education

|

/- m
Modified Secretary class

// A class to represent secretaries.
public class Secretary extends Employee {
public Secretary() {
super (0) ;

}

| O1VH SR Y sy O MM S s ¥ Y B NS A R AR 10 e T A Y0 R BY s I W
Systemiontiprintin (" Taking 'dictabtion of texty Wi+ Taxty)y;
}

» Since secretarydoesn't require any parameters to its
constructor, LegalSecretary compiles without a constructor.
« Its default constructor calls the secretary () constructor.

 osisn) -
""" Copyright 2008 by Pearson Education

/ ——

J—
Inheritance and fields

* Try to give lawyers $5000 for each year at the company:

public class Lawyer extends Employee ({

public double getSalary() {
return super.getSalary() + 5000 * years;
}

)
* Does not work; the error is the following:

Lawyer.java:/: years has private access 1n Employee
returnasuperigebSal grviiin e SO e s

* Private fields cannot be directly accessed from
subclasses.
 One reason: So that subclassing can't break encapsulation.

» How can we get around this limitation?

e 32
: Copyright 2008 by Pearson Education

|

J—
Improved Employee code

Add an accessor for any field needed by the subclass.

public class Employee {
private int years;

ORv SN e A e A N oAV Ve M o N e M Ny s e M A S S S A
years = initialYears;
/

public int getYears() ({
return years;
}

}

public class Lawyer extends Employee ({
public Lawyer (int years) {
super (years) ;

}

public double getSalary() {
return super.getSalary() + 5000 * getYears():
}

Bl 33
U7 Copyright 2008 by Pearson Education

/ = = "
Revisiting Secretary

* The secretary class currently has a poor solution.

» We set all Secretaries to O years because they do not get a
vacation bonus for their service.

o If we call getYyears ona secretaryobject, we'll always get 0.

» This isn't a good solution; what if we wanted to give some
other reward to all employees based on years of service?

e Redesign our Employee class to allow for a better
solution.

B2 34
' Copyright 2008 by Pearson Education

T

J—
Improved Employee code

o Let's separate the standard 10 vacation days from those
that are awarded based on seniority.

public class Employee {
private 1int years;

R S T o B e A e A e o A e e
years = initialYears;

}

public 1nt getVacationDays () {
return 10 + getSeniorityBonus() ;

}

// vacation days given for each year in the company
public int getSeniorityBonus () ({
return 2 * years;

}
: Vi

» How does this help us improve the Secretary?

35
Copyright 2008 by Pearson Education

O oS

J—
Improved secretary code

- Secretary can selectively override getSeniorityBonus;
when getvVacationDays runs, it will use the new version.
» Choosing a method at runtime is called dynamic binding.

public class Secretary extends Employee {
public Secretary(int years) {
super (years) ;

}

// Secretaries don't get a bonus for their years of service.

public int getSeniorityBonus() {
return O;

}

publievwvoldvbakeBictatiomtsbringribext vy

Sy stemyoutiprint iRt Talking idicbabvorniofifex b nnigiitase by

}

"7 Copyright 2008 by Pearson Education

37

W P—————— CO

pyright 2008 by Pearson Education

_ " Copyright 2008 by Pearson Education

" Copyright 2008 by Pearson

Homework 8:
Critters

reading: HWS8 spec

Education

e

(SE 14/ (Fers

o Ant
e Bird

|
. .8
o 2 a
':' r
° ') .5 ° g ¥ : . . O EU=
Hippo 3 R L et
1 w -) 5) . . + 25 alive
5 L o 8 — + 0 kills
= e + 0 food
* Vulture L. R o
' . RN . . - send | Get
- s n [T
o H u k C e t. B.W Loy i i’
R . . 5 . T
. L . .
S y r a I Ve 8. i .- o 5 o W. + 25 alive
e > . 8. 1 L + 0 kills
w AWE e 0 food
w L 25 TOTAL
. 8
L's ... w W .
B L : 55 S + 25 alive
I L w B . : e + 0 kills
» * N N N + 0 food
® be aVIOr- U) B Sy .5 . w : - 25 TOTAL
EN S -3 L S
w . Tiger
: L 2 J L J
PS t eatln food w . B w's w o5 I
M ~ + 0 kills
A g W : . s - + ox
S. o WL . . . =
s L B B L 25 TomL

e fight animal fighting SR

e getColor
® getMove

® toString

o) e

—

color to display

movement
letter to display

" Copyright 2008 by Pearson Education

40

/]
A Critter subclass
public class nName extends Critter { ... }

Sibleiiive s aayetiels e St e e e
public boolean eat ()
pubiic Artack Fight (String oppotent)
// ROAR, POUNCE, SCRATCH
bl Eolto e gei e e
public Direction getMove ()
// NORTH, SOUTH, EAST, WEST, CENTER
public String toStringt)

- 41
= Copyright 2008 by Pearson Education

|

J—
How the simulator works

e "Go" - loop:
» move each animal (getMove)
« if they collide, fight
« if they find food, eat

e Simulator is in control!
* getMove isS one move at a time
o (no loops)
» Keep state (fields)

« to remember future moves

42
" Copyright 2008 by Pearson Education

R m—

J—
Development Strategy

* Do one species at a time

» in ABC order from easier to harder (Ant - Bird > ...)
 debug printilns

e Simulator helps you debug
» smaller width/height
» fewer animals
* "Tick" instead of "Go"
 "Debug"” checkbox
» drag/drop to move animals

e 43
: Copyright 2008 by Pearson Education

e

== .
Critter exercise: Cougar

e Write a critter class Cougar:

Method Behavior

constructor |public Cougar ()

eat Always eats.

taight Always pounces.

getColor Blue if the cougar has never fought; red if he
has.

getMove Walks west until he finds food; then walks east
until he finds food; then goes west and
repeats.

toString SO

gy 44
L Copyright 2008 by Pearson Education

Ideas for state

* You must not only have the right state, but update that
state properly when relevant actions occur.

e Counting is helpful:

» How many total moves has this animal made?
« How many times has it eaten? Fought?

* Remembering recent actions in fields is helpful:

« Which direction did the animal move last?
« How many times has it moved that way?

» Did the animal eat the last time it was asked?
» How many steps has the animal taken since last eating?
» How many fights has the animal been in since last eating?

Copyright 2008 by Pearson Education

45

/ m
Cougar solution

Ahyteley Bty e v as R shs R I F s i Sio o)

pubirevelassv@ongariextendsv@ritrariy
private boolean west;
private boolean fought;

Pl e e
We st i=ires
fought = false;

}

public boolean eat() {
west = !west;
return true;

}

public Attack fight(String opponent) {
AN YR et o e
return Attack.POUNCE;

~ Copyright 2008 by Pearson Education

46

g

Cougar Ssolution

pubibvevColorige ECOT oY
if (fought) {
o= My Bl i S o W i o v Y s B
} else {
Y= My B A Bl W B ol i o AU DA T
}
}

public Direction getMove () {
if (west) {
A e o S P B A A G Ao
} else {
Y Y B A M N L F G A A 9 RO Y e I

}
}

J9 YR M S I e MW o Yy s Vo Y Y o
=1 i O aE g G

}

-
By 47
" Copyright 2008 by Pearson Education

R rma—

- .
Critter exercise: Snake
Method Behavior

constructo |public Snake ()
:

eat Never eats
fight always forfeits
getColor |black

¢ .- | E 5.0y S aF |5 40 | 5E

{5

1 SI 3E
aw S
L
4 W
= ﬁ
Copyright 2008 by Pearson Education

I; |
m

toString |"s"

T

Determining necessary fields

* Information required to decide what move to make?
* Directionto go in
» Length of current cycle
» Number of moves made in current cycle

* Remembering things you've done in the past:
* an int counter?
* a boolean flag?

B 49
Copyright 2008 by Pearson Education

/ =
Snake solution

import java.awt.*; // for Color

public class Snake extends Critter {
private int length; // # steps in current horizontal cycle
private int step: // # of cycle's steps already taken

public Snake () {
length = 1;

step = 0;
}
public Direction getMove () {
step++;
if (step > length) ({ // cycle was just completed
length++;
step = 0;
return Direction.SOUTH;
} else 1f (length % 2 == 1) {
return Direction.EAST;
} else {

return Direction.WEST;
}
}

| TE oA AN E SRR A By RE O M Y G RS a A S I R
SRR e i
}

50
' Copyright 2008 by Pearson Education

