
CSE142 Sample Final Exam

Spring 2018

1. Reference Mystery, 5 points. Consider the following class declaration:

 public static class BasicPoint {

 int x;

 int y;

 public BasicPoint(int initialX, int initialY) {

 x = initialX;

 y = initialY;

 }

 }

 Given the previous declaration, what output would be produced by the

 following program?

 import java.util.*;

 public class ReferenceMystery {

 public static void main(String[] args) {

 BasicPoint p = new BasicPoint(11, 22);

 int[] a = {33, 44};

 int n = 55;

 mystery1(p, a, n);

 System.out.println(p.x + "," + p.y + " " + Arrays.toString(a) + " " + n);

 a[0] = a[1];

 p.x = p.y;

 n = mystery2(a, n);

 System.out.println(p.x + "," + p.y + " " + n);

 }

 public static int mystery1(BasicPoint p, int[] a, int n) {

 n = 0;

 a[0] = a[0] + 11;

 a[1] = 77;

 p.x = p.x + 33;

 System.out.println(p.x + "," + p.y + " " + Arrays.toString(a) + " " + n);

 return n;

 }

 public static int mystery2(int[] a, int n) {

 n = a[0];

 a[0] = a[0] + 11;

 a[1] = n + 11;

 return n;

 }

 }

2. Array Simulation, 10 points. You are to simulate the execution of a method

 that manipulates an array of integers. Consider the following method:

 public static void mystery(int[] a) {

 for (int i = 1; i < a.length - 1; i++) {

 a[i] = (a[i - 1] + a[i + 1]) / 2;

 }

 }

 In the left-hand column below are specific arrays of integers. You are to

 indicate in the right-hand column what values would be stored in the array

 after method mystery executes if the integer array in the left-hand column

 is passed as a parameter to mystery.

 Original Array Final Array

 {1, 1, 3} _________________________________

 {2, 1, 2, 4} _________________________________

 {6, 13, 0, 3, 7} _________________________________

 {-1, 6, 3, 5, -3} _________________________________

 {7, 2, 3, 1, -3, 12} _________________________________

3. Inheritance, 6 points. Assume that the following four

 classes have been defined:

 public class Diamond extends Ruby {

 public String toString() {

 return "Diamond";

 }

 }

 public class Garnet extends Diamond {

 public String toString() {

 return "Garnet";

 }

 public void method1() {

 System.out.println("Garnet 1");

 }

 }

 public class Ruby extends Emerald {

 public void method1() {

 System.out.println("Ruby 1");

 }

 }

 public class Emerald {

 public String toString() {

 return "Emerald";

 }

 public void method1() {

 System.out.println("Emerald 1");

 }

 public void method2() {

 System.out.println("Emerald 2");

 }

 }

 And consider the following code fragment:

 Emerald[] gems = { new Diamond(), new Ruby(),

 new Emerald(), new Garnet() };

 for (int i = 0; i < gems.length; i++) {

 System.out.println(gems[i]);

 gems[i].method1();

 gems[i].method2();

 System.out.println();

 }

 In the space to the right, write the output that would

 be produced by this code exactly as it would appear on

 the console.

4. Token-Based File Processing, 10 points. Write a static method named

 censorNames that accepts one parameter: a Scanner for an input file

 containing the first and last names of several people. Your method should

 print each person’s first name followed by a censored version of their

 last name. Your method should also return the total number of people named

 in the file.

 The input file contains a series of pairs of first names and last names. The

 input may span multiple lines and may have different spacing between tokens.

 You may assume that each first name will be followed by a last name.

 Your method should print one full name per line. Each person’s first name

 will simply be printed as it appears in the file. Instead of printing last

 names, print a series of ‘X’ characters of the same length as the original

 last name. The first and last names should be separated by a space.

 For example, given a Scanner named input referring to an input file that

 contains the following data:

 Whitaker Brand Malcolm X Grace Hopper

 Alan Turing STUART

 Reges

 If we made the following call:

 censorNames(input)

 we would expect the following output:

 Whitaker XXXXX

 Malcolm X

 Grace XXXXXX

 Alan XXXXXX

 STUART XXXXX

 This call would return the value 5. You may assume that the input file

 exists and has the format described above. The file will always contain at

 least one person’s first and last names and will always contain an even

 number of tokens.

5. Line-Based File Processing, 9 points. Write a static method called

 analyzeParagraphs that takes as a parameter a Scanner containing a text file

 and that produces output that describes the paragraph structure of the file,

 returning the maximum number of lines in any given paragraph. Each

 paragraph in the input file will be terminated by the text "<p>" on a line

 by itself.

 For example, consider the following input file:

 This is an example of an input file

 with four different paragraphs.

 <p>

 The second paragraph is the longest

 with three lines, so your method should

 return 3 when processing this file.

 <p>

 <p>

 The third paragraph was empty. This one is just short.

 <p>

 The method should count the number of lines in each paragraph and report

 that information to System.out. For example, if the input above is stored

 in a Scanner called input and we make the following call:

 analyzeParagraphs(input);

 we would expect the following output:

 2-line paragraph

 3-line paragraph

 0-line paragraph

 1-line paragraph

 This call would return the value 3, the maximum number of lines in any given

 paragraph. You must exactly reproduce the format of this output. You may

 assume that the input file has no blank lines, that it contains at least

 one paragraph, and that each paragraph is terminated by a line containing

 just "<p>".

6. Arrays, 10 points. This problem is a variation of the DNA analysis program

 you wrote in assignment 7. In this version of the problem, we will imagine

 that each individual nucleotide in a sequence has been assigned a value

 representing how important that nucleotide is to our analysis. You will

 write code to compute the total value of each of the four nucleotides

 (A, C, G, T) in a given sequence. (Note that this variation is not

 necessarily based on any real-life science.)

 Write a static method called getTotalValues that takes a String and an array

 of doubles as parameters. The array will contain the same number of

 elements as the number of non-junk nucleotides in the string, and each

 element of the array contains the value of the corresponding non-junk

 nucleotide in the string. (That is, the first element of the array

 corresponds to the first non-junk nucleotide, the second element to the

 second non-junk nucleotide, and so on. See below for a more detailed

 example.) Your method should return an array containing the total values of

 A, C, G, and T (in that order) represented by the parameters.

 For example, suppose the following declarations are made:

 String seq = "GA-CAAC-G--C";

 double[] vals = {1.0, 2.1, 1.3, 0.7, 3.4, 2.0, 1.0, 0.6};

 In this case, the first nucleotide, a G, is considered to have value 1.0.

 The second nucleotide, a A, has a value of 2.1; the third non-junk

 nucleotide, a C, has a value of 1.3; and so on.

 Suppose the following call is then made:

 double[] totals = getTotalValues(seq, vals);

 After the call, totals would contain:

 [6.2, 3.9, 2.0, 0.0]

 Where 6.2 is the total value of all A's in the sequence, 3.9 is the total

 value of all C's, 2.0 is the total value of all G's, and 0.0 is the total

 value of all T's (since there were no T’s in the input string).

 You may assume that number of elements in the array and the number of

 non-junk nucleotides in the string are always equal. You may also assume

 that each character in the string parameter will be one of 'A', 'C', 'G',

 'T', or '-' (letters will all be uppercase) and that each value in the array

 is nonnegative.

7. ArrayList, 10 points. Write a static method called split that takes an

 ArrayList of integer values as a parameter and that replaces each value in

 the list with a pair of values, each half the original. If a number in the

 original list is odd, then the first number in the new pair should be one

 higher than the second so that the sum equals the original number. For

 example, if a variable called list stores this sequence of values:

 [18, 7, 4, 24, 11]

 The number 18 is split into the pair (9, 9), the number 7 is split into

 (4, 3), the number 4 is split into (2, 2), the number 24 is split into

 (12, 12) and the number 11 is split into (6, 5). Thus, the call:

 split(list);

 should cause list to store the following sequence of values afterwards:

 [9, 9, 4, 3, 2, 2, 12, 12, 6, 5]

 You may assume that all numbers in the list are nonnegative. You may only

 use ArrayList methods listed on the cheat sheet. You may not construct any

 extra data structures or String objects to solve this problem. You must

 solve it by manipulating the ArrayList you are passed as a parameter.

8. Critters, 15 points. Write a critter class called Panther along with its

 movement, fighting, eating, and appearance. All unspecified aspects of

 Panther use the default Critter behavior. Write the complete class with any

 fields, constructors, etc. necessary to implement the behavior.

 Panthers move randomly around the world, but never stand still. That is, a

 Panther is equally likely to move north, south, east, or west on any given

 move, but will never fail to move (i.e. Direction.CENTER).

 A Panther is always in one of two modes: foraging or hunting. Panthers are

 in foraging mode when initially created. While foraging, a Panther should

 display as black and should always roar when fighting. A Panther that is

 foraging continues foraging until it finds food.

 When a foraging Panther encounters food, the Panther should eat it, and then

 switch to hunting mode. Hunting Panthers should display as red and should

 always scratch when fighting. A hunting Panther continues hunting until it

 gets into a fight, at which point it returns to foraging mode. Hunting

 Panthers do not eat.

9. Arrays, 15 points. Write a static method named insertMiddle that accepts

 two arrays of integers, a and b, as parameters and returns a new array

 containing elements from the first half of a followed by all the elements

 of b followed by elements from the second half of a. For example, consider

 the following two arrays:

 int[] a = {2, 4, 6, 8, 10};

 int[] b = {1, 1, 1};

 The call insertMiddle(a, b); should return the following array:

 {2, 4, 1, 1, 1, 6, 8, 10}

 Notice that if a has an odd length, its shorter half goes first.

 You may not construct any extra data structures or String objects to solve

 this problem; you may only create the one array that you are to return. You

 may not modify the arrays that are passed in.

10. Programming, 10 points. Write a static method called samePattern that

 returns true or false depending upon whether two strings have the same

 pattern of characters. More precisely, two strings have the same pattern

 if they are of the same length and if two characters in the first string

 are equal if and only if the characters in the corresponding positions in

 the second string are also equal. Below are some examples of patterns that

 are the same and patterns that differ (keep in mind that the method should

 return the same value no matter what order the two strings are passed).

 1st String 2nd String Same Pattern?

 ------------ -------------- -------------

 "" "" true

 "a" "x" true

 "a" "ab" false

 "ab" "ab" true

 "aa" "xy" false

 "aba" "+-+" true

 "---" "aba" false

 "abcabc" "zodzod" true

 "abcabd" "zodzoe" true

 "abcabc" "xxxxxx" false

 "aaassscccn" "aaabbbcccd" true

 "asasasasas" "xyxyxyxyxy" true

 "ascneencsa" "aeiouuoiea" true

 "aaassscccn" "aaabbbcccd" true

 "asasasasas" "xxxxxyyyyy" false

 "ascneencsa" "aeiouaeiou" false

 "aaassscccn" "xxxyyyzzzz" false

 "aaasssiiii" "gggdddfffh" false

 Your method should take two parameters: the two strings to compare. You are

 allowed to create new strings, but otherwise you are not allowed to construct

 extra data structures to solve this problem (no array, ArrayList, Scanner,

 etc). You are limited to the String methods on the cheat sheet.

