CSE 143

Programming as Modeling

Reading: Ch. 1-6

Building Virtual Worlds

912912004 (c) University of Washington 011

* Much of programming can be viewed as building a model of a real
or imaginary world in the computer
+ a banking program models real banks
+ a checkers program models a real game
+ a fantasy game program models an imaginary world
+ aword processor models an intelligent typewriter and documents
* Running the program (the model) simulates what would happen in
the modeled world
« Often it's a lot easier or safer to build models than the real thing
+ Example: a tornado simulator

912912004 (c) University of Washington 012

Java Tools for Modeling

+ Objects in Java can model things in the (real or
imaginary) world
« The bank: Customers, employees, accounts, transactions...
« Checkers: The Checkerboard, pieces, players, game history

« Video game: Characters, landscapes, obstacles, weapons,
treasure, scores

« Documents: paragraphs, words, symbols, spelling dictionaries,
fonts, smart paper-clip
* Objects have
« Responsibilities — what you can ask them to do
* Properties — what they know

Basic Java Mechanisms for Modeling

9/29/2004 (¢) University of Washington 01-3

* A class describes a template or pattern for things;
an object or instance of a class is a particular thing

« Constructors model ways to create new instances

» Methods model actions that these things can perform
(i.e., to carry out their responsibilities)

» Messages (method calls) model requests from one thing
to another

* Instance variables model the state or properties of
things
epublicyvs. private
* Instance variables should normally be private

912912004 (c) University of Washington 01-4

What Makes a Good Model?

+ Often, the closer the model matches the (real or
imaginary) world, the better
« More likely it's an accurate model
« Easier for human readers of the program to understand what's
going on in the program
» Sometimes, a too detailed model of reality is not a good
thing
* Why?

What Else Makes a Good Model?

9/29/2004 (¢) University of Washington 015

* The easier the model is to extend & evolve, the better
» May want to extend the model...
* May need to change the model...

+ Sad law of life: “A Program is Never Finished”
* Or at least a useful program is never finished

* Why??

CSE143 Au04

912912004 (©) University of Washington 016

01-1

Coupling and Cohesion

* A qualitative way to evaluate the organization of classes
or modules

* Coupling - the degree to which a class interacts with or
depends on another class

* Cohesion — how well a class encapsulates a single
notion

* A system is more robust and easier to maintain if
+ Coupling between classes/modules is minimized
+ Cohesion within classes/modules is maximized

912912004 (c) University of Washington 017

A Review Example

[I** Representation of an employee in a personnel system
* @author Hal Perkins
* @version CSE143 Sp03 lecture example */
public abstract class Employee {
Il'instance variables
private String name; I employee name
privateint id; Il employee id number
private double pay; Il employee weekly pay
[Construct a new employee with the give name, id number, and weekly pay
* @param name Employee's name
*@paramid Employee's id number
¥

public Employee(String name, int id, double pay) {
this.name = name;
thisid =id;
this.pay = pay;

}

912912004 (c) University of Washington 018

Employee Example (2)

o
* Return the name of this employee
* @return Employee name
¥
public String getName() {
return name;

}
o

*Return the id number of this employee
* @return Employee id number
#
public int getld() {
return id;

}

9/29/2004 (¢) University of Washington 01-9

Employee Example (3)

Jer
* Return the pay earned by this employee
* @return Employee's pay for the current pay period
¥
1
public double getPay() {
return pay;

** Set this employee’s pay
* @param newPayRate new pay rate for this employee

¥

public void setPay(double newPayRate) {
pay = newPayRate;

912912004 (c) University of Washington 01-10

toString: Recommended for All Classes

» A method with this exact signature:
public String toString();

** Return a string representation of this employee */
public String toString() {
return "Employee(name =" + name +",id =" +id +
", pay ="+ pay +")";
}

+ Java treats toString in a special way

« In many cases, will automatically call toString when a String
value is needed:

System.out.printin(“The bank account: " + account);

9/29/2004 (¢) University of Washington 01-11

toString

* Good while debugging
System.out.printin(anObject); // calls anObject.toString()
* Secret Java lore:

+ All Objects in Java have a built-in, default toString method
* So why define your own??

CSE143 Au04

912912004 (©) University of Washington 01-12

01-2

JavaDoc

+ Java provides a clean way of including documentation as part of
the source code — JavaDoc comments
« Begin with /** and end with */
+ Can be automatically formatted to produce web documentation
« Built-in support in current DrJava, Eclipse; command-line tool available
* Special tags to control formatting
» @author - specify author
* @version - version number, date, etc.
* @param - description of a method parameter
* @return - description of a non-void method result
« Others (links, see also, ...), plus can use arbitrary html
* Used to produce all online Java API documentation

Another Common Practice

912912004 (c) University of Washington 0113

* Place a static main method in each class to test or
demonstrate

[** Create and test some of the Employee operations */
public static void main (String[] args) {
Employee bob = new Employee("Joe Bob*, 314, 1000.00);
bob.setPay(1200);
System.out.printIn(bob.getName());
System.out.printin(bob); // automatically calls bob.toString()

}

} I end of Employee

912912004 (c) University of Washington 01-14

Required vs. Recommended

+ Writing toString is "recommended"
+ Creating main methods is "recommended”
* You've probably been given other recommendations:
« comments, variable naming, indentation, etc.
« Use this library, don't use that library
* Why bother, when the only thing that matters is whether
your program runs or not?

« Answer: Whether your program runs or not is not the only thing
that matters!
Yes, it needs to work, but people need to be able to read and understand it

Software Engineering and Practice

9/29/2004 (¢) University of Washington 01-15

+ Building good software is not just about getting it to
produce the right output
» Many other goals may exist
« "Software engineering" refers to practices which
promote the creation of good software, in all its aspects
+ Some of this is directly code-related: class and method design
+ Some of it is more external: documentation, style
+ Some of it is higher-level: system architecture
« Attention to software quality is important in CSE143
+ as itis in the profession

CSE143 Au04

912912004 (c) University of Washington 01-16

01-3

