
CSE143 Au04 04-1

9/29/2004 (c) 2001-3, University of Washington 04-1

CSE 143 Java

More About Inheritance

9/29/2004 (c) 2001-3, University of Washington 04-2

Topics for Today
• Protected members of classes
• Super in constructors and other methods
• Using “this” to run other constructors
• Overloading, constructors and “this”
• Overriding some common methods declared in Object –

equals, compareTo, clone
• instanceof operator

9/29/2004 (c) 2001-3, University of Washington 04-3

Member Access in Subclasses
• public: accessible anywhere the class can be accessed
• private: accessible only inside the same class

• Does not include subclasses – derived classes have no special
permissions

• A new mode: protected
accessible inside the defining class and all its
subclasses
• Use protected for "internal" things that subclasses also are

intended to access
• Consider this carefully – often better to keep private data

private and provide appropriate (protected) set/get methods
9/29/2004 (c) 2001-3, University of Washington 04-4

Using Protected
• If we had declared the Employee instance variables protected,

instead of private, then this constructor would be legal
public HourlyEmployee(String name, int id, double pay) {

// initialize inherited fields
this.name = name;
this.id = id;
// initialize local fields
this.payRate = pay;
this.hoursWorked = 0.0;

}

• But it's still poor code [why?]

9/29/2004 (c) 2001-3, University of Washington 04-5

Super

• If a subclass constructor wants to run a superclass constructor,
it can do that using the syntax

super(<possibly empty list of argument expressions>)

as the first thing in the subclass constructor's body
• Example:

public HourlyEmployee(String name, int id, double pay) {
super(name, id);
payRate = pay;
hoursWorked = 0.0;

}

9/29/2004 (c) 2001-3, University of Washington 04-6

Constructor Rules
• Rule 1: If you do not write any constructor in a class, Java

assumes there is a zero-argument, empty one
ClassName() { }

• If you write any constructor, Java does not make this assumption
• Rule 2: If you do not write super(…) as the first line of a

constructor, the compiler will assume the constructor starts with
super();

• Rule 3: When an extended class object is constructed, there must
be a constructor in the parent class whose parameter list matches
the explicit or implicit call to super(…)

• Corollary: a constructor is always called at each level of the
inheritance chain when an object is created

CSE143 Au04 04-2

9/29/2004 (c) 2001-3, University of Washington 04-7

Super
• Another use for super: in any subclass, super.msg(args)

can be used to call the version of the method in the
superclass, even if it has been overridden
• Can be done anywhere in the code – does not need to be at the

beginning of the calling method, as for constructors
• Often used to create “wrapper” methods

/** Return the pay of this manager. Managers receive a 20% bonus */
public double getPay() {

double basePay = super.getPay();
return basePay * 1.2;

}
• Question: what if we had written “this.getPay()” instead?

9/29/2004 (c) 2001-3, University of Washington 04-8

Overriding and Overloading (Review)
• In spite of the similar names, these are very different
• Overriding: replacing an inherited method in a subclass

class One {
public int method(String arg1, double arg2) { … }

}
class Two extends One {

public int method(String arg1, double arg2) { … }
}

• Argument lists and results must match exactly (number and
types)

• Method called depends on actual (dynamic) type of the receiver

9/29/2004 (c) 2001-3, University of Washington 04-9

Overloading
• Overloading: a class may contain multiple definitions for

constructors or methods with the same name, but
different argument lists

class Many {
public Many() { … }
public Many(int x) { … }
public Many(double x, String s) { … }
public void another(Many m, String s) { … }
public int another(String[] names) { … }

• Parameter lists must differ in number and/or type of parameters
Result types can differ, or not

• Method calls are resolved automatically depending on number
and (static) types of arguments – must be a unique best match

9/29/2004 (c) 2001-3, University of Washington 04-10

Overloaded Constructors and this
• Classes often have several related Constructors

• Common pattern: some provide explicit parameters while
others assume default values

• “this” can be used at the beginning of a constructor to
execute another constructor in the same class
• Syntax similar to super
• Can have other statements in the constructor following the

“this” call
• Good practice – can provide a single implementation of code

common to both constructors

9/29/2004 (c) 2001-3, University of Washington 04-11

Example: HourlyEmployee Constructors
/** Construct an hourly employee with name, id, and pay rate */
public HourlyEmployee(String name, int id, double pay) {

super(name, id);
payRate = pay;
hoursWorked = 0.0;

}

// default pay for new hires
private static double defaultPay = 17.42;

/** Construct an hourly employee with name, id, and default pay rate */
public HourlyEmployee(String name, int id) {
this(name, id, defaultPay);

}

9/29/2004 (c) 2001-3, University of Washington 04-12

Comparing Objects
• Object defines a boolean function equals to test whether

two objects are the same
• Object's implementation just compares objects for

identity, using ==
• This behavior is often not what you want

• Probably more appropriate concept of equality:
• obj1.equals(obj2) should return true if obj1 and obj2 represent

the “same value”
• A class that wants this behavior must override equals()

Somewhat tricky to do right – see Bloch, “Effective Java” (A-W, 2001) for a
discussion

CSE143 Au04 04-3

9/29/2004 (c) 2001-3, University of Washington 04-13

instanceof
• The expression <object> instanceof <classOrInterface> is true if

the object is an instance of the given class or interface (or any
subclass of the one given)

• One common use: checking types of generic objects before
casting

/** Compare this Blob to another Blob and return true if equal, otherwise false */
public boolean equals(Object otherObject) {

if (otherObject instanceof Blob) {
Blob bob = (Blob) otherObject;
…. compare this to bob and return appropriate answer …

} else {
return false;

}
}

• Overuse (or even use?) of instanceof is often a sign of bad design
that doesn’t use inheritance and overriding appropriately

9/29/2004 (c) 2001-3, University of Washington 04-14

Comparing The Order of Objects
• Many objects have a natural linear or total order

• For any two values, one is always <= the other
• A boolean comparison doesn't tell about relative order
• Type Object does not have a method for this kind of comparison

(why not?)
• The most commonly used order comparison method has this

signature:
int compareTo(Object otherObject)

• return negative, 0, or positive value to indicate <, =, >
• The Comparable interface specifies this method

• Any class that provides compareTo should implement this interface
• A “marker” interface – things like sort methods require Comparable objects

9/29/2004 (c) 2001-3, University of Washington 04-15

Copying Object and clone()
• Review: what does a = b; mean? (Hint: draw the picture)
• This behavior is not always desirable
• In Java, the = operator cannot be overridden
• Instead, a method to copy can be written
• obj.clone() should return a copy of obj with the “same” value

• Object's implementation returns a new instance of the same class whose
instance variables have the same values as obj

• Object's implementation is protected
• If a subclass needs to do something different, e.g. clone some of the

instance variables too, then it should override clone()
• clone cannot be used at will...

• Class must be marked as "Clonable"

9/29/2004 (c) 2001-3, University of Washington 04-16

Main Ideas of Inheritance
• Main idea: use inheritance to relate similar classes

• Better modeling
• Supports writing polymorphic code
• Avoids code duplication

• Other ideas:
• Use protected rather than private for things that will be

needed by subclasses
• Use overriding to make changes to superclass methods
• Use super in constructors and methods to invoke superclass

operations

