
CSE143 Au04 04a-1

10/5/2004 (c) 2003-4, University of Washington 04a-1

CSE 143 Java

Testing and JUnit

Reading: www.junit.org; DrJava JUnit Help

10/5/2004 (c) 2003-4, University of Washington 04a-2

Testing & Debugging
• Testing Goals

• Verify that software behaves as expected
• Be able to recheck this as the software evolves

• Debugging
• A controlled experiment to discover what is wrong
• Strategies and questions:

What’s wrong?
What do we know is working? How far do we get before something isn’t right?
What changed?

(Even if the changed code didn’t produce the bug, it’s fairly likely that some interaction
between the changed code and other code did.)

10/5/2004 (c) 2003-4, University of Washington 04a-3

Unit Tests
• Idea: create small tests that verify individual properties

or operations of objects
• Do constructors and methods do what they are supposed to?
• Do variables and value-returning methods have the expected

values?
• Is the right output produced?

• Lots of small unit tests, each of which test something
specific, not big, complicated tests
• If something breaks, the broken test is a clue about where the

problem is

10/5/2004 (c) 2003-4, University of Washington 04a-4

Writing Tests
• When?

Before you write the code!!!

• Say what? Why would you do that?
• Helps you understand the problem and think about code design

and implementation
• Gives you immediate feedback once the code is written

10/5/2004 (c) 2003-4, University of Washington 04a-5

Where to put the tests?
• DrJava’s interactions window

• Great way to prototype tests
• Way too tedious to do any extensive testing

• Main methods
• Either too many to do a thorough job, or
• Methods that test too much – hard to isolate problems

• Either way, someone has to check the output
• Better: automate this by writing self-checking tests

10/5/2004 (c) 2003-4, University of Washington 04a-6

JUnit
• Test framework for Java Unit tests
• Idea: implement classes that extend the JUnit TestCase

class
• Each test in the class is named testXX (name starting

with “test” is the key)
• Each test performs some computation and then checks

the result
• Optional: setUp() method to initialize instance variables

or otherwise prepare before each test
• Optional: tearDown() to clean up after each test

• Less commonly used than setUp()

CSE143 Au04 04a-2

10/5/2004 (c) 2003-4, University of Washington 04a-7

Example (from DrJava help)
• Tests for a simple calculator object

import junit.framework.TestCase;
public class CalculatorTest extends TestCase {

public void testAddition() {
Calculator calc = new Calculator();
int expected = 7;
int actual = calc.add(3, 4);
assertEquals(“adding 3 and 4”, expected, actual);

}
…

}

10/5/2004 (c) 2003-4, University of Washington 04a-8

Another Calculator Test
public void testDivisionByZero() {

Calculator calc = new Calculator();
try { // exception handling – coming attraction

calc.divide(2, 0);
fail(“should have thrown an exception”);

} catch (ArithmeticException e) {
// do nothing – this is what we expect

}
}

10/5/2004 (c) 2003-4, University of Washington 04a-9

What Kinds of Checks are Available
• Look in junit.framework.Assert (JavaDocs on

www.junit.org)
• Examples

assertEquals(expected, actual); // works on any type except double
// uses .equals() for objects

assertEquals(messsage, expected, actual); // all have variations with messages
assertEquals(expected, actual, delta); // for doubles to test “close enough”
assertFalse(condition);
assertTrue(condition);
assertNotNull(object);
assertNull(object);
fail();
// and some others

10/5/2004 (c) 2003-4, University of Washington 04a-10

setUp
• If the tests require some common initial setup, we can

write this once and it is automatically executed before
each test (i.e., each test starts with a fresh setUp)

import junit.framework.TestCase;
public class CalculatorTest extends TestCase {

private Calculator calc; // calculator object for tests
/** initialize for each test */
protected void setUp() {

calc = new Calculator();
}

// tests as before, but without local declaration/initialization of calc

10/5/2004 (c) 2003-4, University of Washington 04a-11

Summary
• Unit tests – a key to robust software

• Verify correct operation of new code
• Repeated running of tests as code changes increases

confidence that changes don’t introduce bugs
(or makes it much easier to track down problems that do occur)

• Tests become part of the project history/culture
• Write the tests before you write the code
• If you discover a bug you didn’t test for, add a test
• A little up-front effort will pay off in much better quality

code and much less time tracking down problems

