
CSE143 Au04 11-1

10/20/2004 (c) 2001-4, University of Washington 11-1

CSE 143 Java

Exception Handling

Reading: Ch. 15

10/20/2004 (c) 2001-4, University of Washington 11-2

Overview
• Topics

• Exceptions (review)
• Exception handling
• Use of exceptions

10/20/2004 (c) 2001-4, University of Washington 11-3

Exceptions as Errors (Review)
• When we discussed programming by contract, we

described how to throw an exception to indicate an error
(precondition not met or other reason)

if (argument == null) {
throw new NullPointerException();

}

if (index < 0 || index > size) {
throw new IndexOutOfBoundsException(“No such item”);

}

10/20/2004 (c) 2001-4, University of Washington 11-4

Exception Handling
• Idea: exceptions can represent unusual events that

client could handle (as well as errors)
• Finite data structure is full; can’t add new element
• Attempt to open a file failed
• Network connection dropped in the middle of a transfer

• Problem: the object that detects the error doesn’t (and
probably shouldn’t) know how to handle it

• Problem: the client code could handle the error, but isn’t
in a position to detect it

• Solution: object detecting an error throws an exception;
client code catches the exception and handles it

10/20/2004 (c) 2001-4, University of Washington 11-5

try-catch
• Basic syntax

try {
somethingThatMightBlowUp();

} catch (Exception e) {
recovery code – here e, the exception object, is a “parameter”

}

• Semantics
• Execute try block
• If an exception is thrown, terminate throwing method and all

methods that called it, until reaching a method that catches the
exception (has a catch with a matching parameter type)

• Catch block can either process the exception, re-throw it, or
throw another exception

10/20/2004 (c) 2001-4, University of Washington 11-6

try-catch
• Can have several catch blocks

try {
attemptToReadFile();

} catch (FileNotFoundException e) {
…

} catch (IOException e) {
…

} catch (Exception e) {
…

}
• Semantics: actual exception type compared to exception

parameter types in order until a compatible match is found
• No match – exception propagates to calling method

CSE143 Au04 11-2

10/20/2004 (c) 2001-4, University of Washington 11-7

Exception Objects In Java
• Exceptions are regular objects in Java
• Exception types must be subclasses (directly or

indirectly) of the library class Throwable
• Some predefined Java exception classes:

• RuntimeException (a very generic kind of exception)
• NullPointerException
• IndexOutOfBoundsException
• ArithmeticException (e.g. integer divide by zero, etc.)
• IllegalArgumentException (for any other kind of bad argument)

• Most exceptions have constructors that take a String
argument – an error message, etc.

10/20/2004 (c) 2001-4, University of Washington 11-8

Throwable/Exception Hierarchy

Throwable

Error Exception

RuntimeException

ArithmeticException

NullPointerException

IllegalArgumentException

...

...

10/20/2004 (c) 2001-4, University of Washington 11-9

Exceptions as Part of Method Specifications
• Generally a method must either handle an exception or

declare that it can potentially throw it
void readSomeStuff() {

try {
readIt();

catch (IOException e) {
handle

}
or

void readSomeStuff() throws IOException {
readIt();

}

10/20/2004 (c) 2001-4, University of Washington 11-10

Checked vs Unchecked Exceptions (1)
• There’s no point in declaring that methods can

potentially throw NullPointerException,
IndexOutOfBoundsException,…

(Would wind up declaring this everywhere – useless clutter)

• Java exceptions are categorized as checked or
unchecked
• Unchecked: things like NullPointerException, … (subclasses of

RuntimeException)
• Checked: things like IOException

10/20/2004 (c) 2001-4, University of Washington 11-11

Checked vs Unchecked Exceptions (2)
• Rule: a method must either handle (catch) all checked

exceptions it might encounter, or declare that it might
throw them

• No need to declare anything about unchecked
exceptions
• But often a good idea to declare unchecked exceptions that the

method specifically throws (e.g., IlegalArgumentException, …)
to make this part of the method documentation

10/20/2004 (c) 2001-4, University of Washington 11-12

Throwable/Exception Hierarchy
Throwable

Error Exception

RuntimeException

ArithmeticException

NullPointerException

IllegalArgumentException

[checked]

…

[checked]

[checked]

[checked]
IOException

[checked]
FileNotFoundException

[checked]

CSE143 Au04 11-3

10/20/2004 (c) 2001-4, University of Washington 11-13

finally
• One last wrinkle: finally

try {
…

} catch (SomeException e) {
…

} catch (SomeOtherException e) {
…

} finally {
…

}
• Semantics: code in the finally block is always executed,

regardless of whether we catch an exception or not
• Useful to guarantee execution of cleanup code no matter what

10/20/2004 (c) 2001-4, University of Washington 11-14

Use of Exception Handling
• Intended for unusual or unanticipated conditions

• Relatively expensive if thrown (free if not used)
• Can lead to obfuscated code if used too much

• Guideline: Use in situations where you are in a position
to detect an error, but only client code would know how
to react

• Guideline: Often appropriate in cases where a method’s
preconditions are met but the method isn’t able to
successfully establish postconditions (i.e., method can’t
do what is requested through no fault of the caller)

