#### CSE 143 Java

#### Sorting

Reading: Sec. 19.3

11/21/2004

(c) 2001-4, University of Washington

23-1

### Sorting

- · Binary search is a huge speedup over sequential search
- · But requires the list be sorted
- · Slight Problem: How do we get a sorted list?
  - · Maintain the list in sorted order as each word is added
  - · Sort the entire list when needed
- Many, many algorithms for sorting have been invented and analyzed
- Our algorithms mostly assume the data is already in an array
  - Other starting points and assumptions are possible

11/21/2004

(c) 2001-4, University of Washington

23-2

#### Insert for a Sorted List

- · One possibility: ensure the list is always sorted as it is created
- Exercise: Assume that words[0..size-1] is sorted. Place new word in correct location so modified list remains sorted
  - · Assume that there is spare capacity for the new word
- · Before coding:
  - · Draw pictures of an example situation, before and after
  - $\boldsymbol{\cdot}$  Write down the postconditions for the operation

 ${\it II}$  given existing list words[0..size-1], insert word in correct place and increase size void insertWord(String word) {

size++;

11/21/2004

(c) 2001-4, University of Washington

23-3

#### **Picture**

• Draw your picture here

11/21/2004

(c) 2001-4, University of Washington

23-4

#### **Insertion Sort**

- Once we have insertWord working...
- We can sort a list in place by repeating the insertion operation

```
void insertionSort() {
   int finalSize = size;
   size = 1;
   for (int k = 1; k < finalSize; k++) {
      insertWord(words[k]);
   }
}</pre>
```

11/21/2004

(c) 2001-4, University of Washington

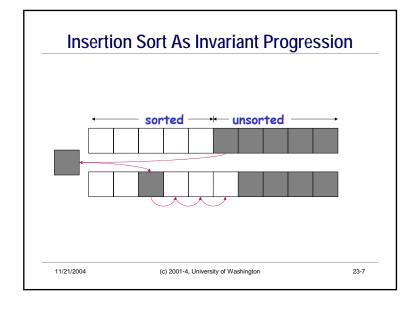
## **Insertion Sort As A Card Game Operation**

- A bit like sorting a hand full of cards dealt one by one:
  - · Pick up 1st card it's sorted, the hand is sorted
  - Pick up 2<sup>nd</sup> card; insert it after or before 1<sup>st</sup> both sorted
  - Pick up 3rd card; insert it after, between, or before 1st two
- ...
- · Each time:
  - Determine where new card goes
  - Make room for the newly inserted card and place it there

11/21/2004

(c) 2001-4, University of Washington

23-6



```
Insertion Sort
    // instance variable
    int[] list;
                                 // list[0..size-1] is the list to be sorted
    int size:
    // Sort list[0..size-1]
    public void sort {
      for (int j=1; j < size; j++) {
           // pre: 1 <= j && j < size && list[0 ... j-1] is in sorted order
           int temp = list[ j ];
           for (int i = j -1; i >= 0 \&\& list[i] > temp; i--) {
              list[i+1] = list[i] :
           list[i+1] = temp;
           // post: 1 \le j \&\& j \le size \&\& list[0 ... j] in sorted order
11/21/2004
                                  (c) 2001-4, University of Washington
```

#### **Insertion Sort Trace**

- Initial array contents
  - 0 pear
  - 1 orange
  - 2 apple
  - 3 rutabaga
  - 4 aardvark
  - 5 cherry
  - 6 banana
  - 7 kumquat

11/21/2004

(c) 2001-4, University of Washington

23-9

#### **Insertion Sort Performance**

- Cost of each insertWord operation:
- Number of times insertWord is executed:
- Total cost:
- · Can we do better?

11/21/2004

(c) 2001-4, University of Washington

23-10

## **Analysis**

- Why was binary search so much more effective than sequential search?
  - Answer: binary search divided the search space in half each time; sequential search only reduced the search space by 1 item per iteration
- Why is insertion sort O(n<sup>2</sup>)?
  - $\cdot$  Each insert operation only gets 1 more item in place at cost O(n)
  - · O(n) insert operations
- Can we do something similar for sorting?

11/21/2004

(c) 2001-4, University of Washington

23-11

#### Where are we on the chart?

|       | log <sub>2</sub> N<br> | 5N<br> | N log <sub>2</sub> N   | N <sup>2</sup> | 2 <sup>N</sup> |
|-------|------------------------|--------|------------------------|----------------|----------------|
| 8     | 3                      | 40     | 24                     | 64             | 256            |
| 16    | 4                      | 80     | 64                     | 256            | 65536          |
| 32    | 5                      | 160    | 160                    | 1024           | ~10°           |
| 64    | 6                      | 320    | 384                    | 4096           | ~1019          |
| 128   | 7                      | 640    | 896                    | 16384          | ~1038          |
| 256   | 8                      | 1280   | 2048                   | 65536          | ~1076          |
| 10000 | 13                     | 50000  | <b>10</b> <sup>5</sup> | 108            | ~103010        |

11/21/2004 (c) 2001-4, University of Washington 23-12

## **Divide and Conquer Sorting**

- Idea: emulate binary search in some ways
- 1. divide the sorting problem into two subproblems;
- 2. recursively sort each subproblem;
- 3. combine results
- · Want division and combination at the end to be fast
- · Want to be able to sort two halves independently
- This algorithm strategy is called divide and conquer



11/21/2004

11/21/2004

(c) 2001-4, University of Washington

23-13

#### **Ouicksort**

- Invented by C. A. R. Hoare (1962)
- Idea
  - Pick an element of the list: the pivot
  - Place all elements of the list smaller than the pivot in the half of the list to its left; place larger elements to the right
  - · Recursively sort each of the halves
- Before looking at any code, see if you can draw pictures based just on the first two steps of the description

11/21/2004

(c) 2001-4, University of Washington

23-14

#### Code for QuickSort

(c) 2001-4, University of Washington

## **Recursion Analysis**

· Base case? Yes.

// quit if empty partition
if (lo > hi) { return; }

· Recursive cases? Yes

qsort(lo, pivotLocation-1);
qsort(pivotLocation+1, hi);

Each recursive cases work on a smaller subproblem, so algorithm will terminate

11/21/2004

(c) 2001-4, University of Washington

23-16

## A Small Matter of Programming

- · Partition algorithm
  - · Pick pivot
  - · Rearrange array so all smaller element are to the left, all larger to the right, with pivot in the middle
- · Partition is not recursive
- Fact of life: partition can be tricky to get right
  - · Pictures and invariants are your friends here
- · How do we pick the pivot?
  - For now, keep it simple use the first item in the interval
  - · Better strategies exist

11/21/2004

(c) 2001-4, University of Washington

23-17

## Partition design

- · We need to partition words[lo..hi]
- · Pick words[lo] as the pivot
- Picture:

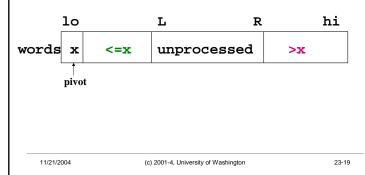
11/21/2004

23-18

(c) 2001-4, University of Washington

## A Partition Implementation

- Use first element of array section as the pivot
- Invariant:

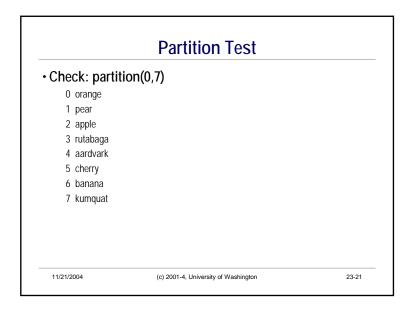


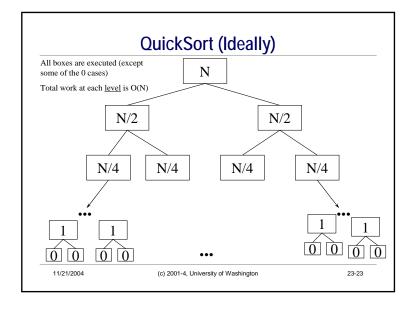
# Partition Algorithm: PseudoCode

// Partition words[lo..hi]; return location of pivot in range lo..hi int partition(int lo, int hi) {

11/21/2004

(c) 2001-4, University of Washington





## Complexity of QuickSort

- Each call to Quicksort (ignoring recursive calls):
  - Each call of partition() is O(n) where n is size of the *part* of array being sorted

Note: This n is smaller than the N of the original problem

- Some O(1) work
- Total = O(n) (n is the size of array part being sorted)
- Including recursive calls:
  - Two recursive calls at each level of recursion, each partitions "half" the array at a cost of O(n/2)
  - · How many levels of recursion?

11/21/2004

(c) 2001-4, University of Washington

23-22

# **QuickSort Performance (Ideal Case)**

- Each partition divides the list parts in half
  - Sublist sizes on recursive calls: n, n/2, n/4, n/8....
  - Total depth of recursion: \_\_\_\_\_
  - Total work at each level: O(n)
  - Total cost of quicksort: \_\_\_\_\_\_
- For a list of 10,000 items
  - Insertion sort: O(n²): 100,000,000
  - Quicksort: O(n log n): 10,000 log<sub>2</sub> 10,000 = 132,877

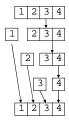
11/21/2004

(c) 2001-4, University of Washington

23-24

#### Worst Case for QuickSort

 If we're very unlucky, then each pass through partition removes only a single element.



• In this case, we have N levels of recursion rather than log<sub>2</sub>N. What's the total complexity?

11/21/2004

(c) 2001-4, University of Washington

23-25

# **QuickSort Performance (Worst Case)**

- Each partition manages to pick the largest or smallest item in the list as a pivot
  - · Sublist sizes on recursive calls:
  - Total depth of recursion: \_\_\_\_\_\_
  - Total work at each level: O(n)
  - Total cost of quicksort: \_\_\_\_\_\_

11/21/2004

(c) 2001-4, University of Washington

23-26

## Worst Case vs Average Case

- QuickSort has been shown to work well in the average case (mathematically speaking)
- In practice, Quicksort works well, provided the pivot is picked with some care
- Some strategies for choosing the pivot:
  - Compare a small number of list items (3-5) and pick the *median* for the pivot

(Typically check the first, middle, last, and a couple of items in between – works well even if the original array is almost sorted)

• Pick a pivot element randomly (!) in the range lo..hi

11/21/2004

(c) 2001-4, University of Washington

23-27

#### QuickSort as an Instance of Divide and Conquer

| Generic Divide and<br>Conquer                     | QuickSort                                                                                                                                                                   |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Divide                                         | Pick an element of the list: the <i>pivot</i> Place all elements of the list smaller than the pivot in the half of the list to its left; place larger elements to the right |
| 2. Solve subproblems separately (and recursively) | Recursively sort each of the halves                                                                                                                                         |
| 3. Combine subsolutions to get overall solution   | Surprise! Nothing to do                                                                                                                                                     |

11/21/2004 (c) 2001-4, University of Washington 23-28

## Another Divide-and-Conquer Sort: Mergesort

- 1. Split array in half
  - just take the first half and the second half of the array, without rearranging
- 2. Sort the halves separately
- 3. Combining the sorted halves ("merge")
  - repeatedly pick the least element from each array
  - · compare, and put the smaller in the resulting array
  - · example: if the two arrays are

| 1 | 12 | 15 | 20 |    |
|---|----|----|----|----|
| 5 | 6  | 13 | 21 | 30 |

The "merged" array is

1 5 6 12 13 15 20 21 30

· note: we will need a second array to hold the result

11/21/2004

(c) 2001-4, University of Washington

23-29

## **Summary**

- · Divide and Conquer
  - · Algorithm design strategy that exploits recursion
  - Divide original problem into subproblems
  - Solve each subproblem recursively
  - Can sometimes yield dramatic performance improvements
- Sorting
  - Quicksort, mergesort: classic divide and conquer algorithms

11/21/2004

(c) 2001-4, University of Washington

23-31

#### **Quicksort vs MergeSort**

- Mergesort always has subproblems of size n/2
  - · Which means guaranteed O(n log n)
- But mergesort requires an extra array for the result
  - · No problem if you're sorting disk or tape files
  - Can be a problem if you're trying to sort large lists in main memory
- In practice, quicksort is the most commonly used general-purpose sort
  - Pretty easy to pick pivots well, so expected time is O(n log n)
  - · Doesn't require extra space for a copy of the data

11/21/2004

(c) 2001-4, University of Washington

23-30