
CSE 143 Wi05 Final Exam Page 1 of 11

Reference information about many standard Java classes appears at the end of the test. You might want
to tear off those pages to make them easier to refer to while solving the programming problems.

Question 1. (4 points) This code doesn’t compile. Fix it. Be sure that with your fix, it does what its
javadoc describes. (Note you may not need to add code in all the blank spaces – if you can get by with
less, that’s fine.)

/**
 * Peek at what’s in a file by opening it and returning the first
 * line. If anything goes wrong (no such file, error reading the
 * file,...) return null.
 * @param filename name of the file
 * @return the first line of the file, or null if anything went wrong
 */
public String peek (String filename) {

 BufferedReader in
 = new BufferedReader(new FileReader(new File(filename)));

 String line = in.readLine();

 in.close();

 return line;

}

CSE 143 Wi05 Final Exam Page 2 of 11

Question 2. (6 points) The following code raises a number to a power by repeatedly multiplying by the
number.

/** Raise x to the power n, for n >= 0. */
public double raise(double x, int n) {
 double result = 1;
 for (int i = 1; i <= n; i++) {
 result = result * x;
 }
 return result;
}

(a) (1 point) Exactly how many multiplications does this do when the power is some particular integer n?
(Give an expression using n.)

(b) (1 point) What is its complexity?

Question 3. (4 points) Put the following complexities in order of best (fastest) to worst (slowest):

 O(n log n), O(n2), O(2n), O(log n)

CSE 143 Wi05 Final Exam Page 3 of 11

Question 4. (10 points) Answer the questions below about this binary tree.

(a) (2 points) Which node(s) is(are) leaf nodes?

(b) (1 points) What is the height of the node that contains 30?

(c) (2 points) Is this a binary search tree?

(d) (3 points) Draw another tree below that contains the same numbers as the one above, is a binary search
tree, and is as shallow (has the smallest height) as possible.

(e) (2 points) Why is it an advantage for a binary search tree to be as shallow as possible?

CSE 143 Wi05 Final Exam Page 4 of 11

Question 5. (8 points) What is the average (expected) time, in O() notation, needed to determine
whether a particular value appears in the following data structures, assuming that the data structure
contains n values, and that an appropriate, fast algorithm is used.

i) Linked list

ii) Sorted array

iii) Unsorted array

iv) Binary tree (not Binary Search Tree)

v) Binary Search Tree

vi) Hash table (map)

(b) Is the worst-case time needed to search for a value different from the average (expected) time for any
of the data structures in part (a)? If so, which ones, and what is (are) the worst-case time(s) for each one?

CSE 143 Wi05 Final Exam Page 5 of 11

Question 6. (8 points) In lecture we represented the nodes in a binary search tree containing integer
values with the following data structure.

 class BTNode {
 public int item; // integer value in this node
 public BTNode left; // left subtree, or null if none
 public BTNode right; // right subtree, or null if none
 }

Complete the definition of the recursive function nPos, below, so that it returns the number of nodes in a
binary search tree whose item field is a positive integer (i.e., greater than 0). For full credit, you need to
use recursion, and you also need to limit your search only to the parts of the tree that could contain
positive values. (i.e., don’t search parts of the tree that are known to only contain non-positive numbers.)

 /** Return the number of nodes in the subtree with root r
 * that contain positive integer values in their item field.
 */
 public int nPos(BTNode r) {

 }

CSE 143 Wi05 Final Exam Page 6 of 11

Question 7. (8 points) We spent a lot of time implementing classes that hold collections of objects.
Here, you’ll use one of the library collection classes – a LinkedList -- to implement another sort of class
that holds objects – a stack. A stack is unusual because it only allows adding things and removing things
at one end, just as though they were stacked one on top of the other – only the one on top can be removed,
and you can only put another item on the top. That is, the last thing that got put into the stack is the first
thing that comes out. A stack doesn’t allow doing anything to other items on the stack besides the one on
top.

Our Stack class will have two operations for adding and removing items: “push” adds an object to the top
of the stack, and “pop” removes the top object from the stack and returns it. We’ll give you the instance
variable for the LinkedList -- you write push pop, and the constructor. Make sure they do what their
javadoc says they will. Add anything you need to the constructor or instance variables.

public class Stack {

 private LinkedList list;

 /** Construct a new, empty stack */
 public Stack() {

 }

 /**
 * Add an object to the front (or "top") of the stack.
 * @param object – the object to add
 */
 public void push(Object object) {

 }

 /**
 * Remove and return the object at the front (or "top") of the stack.
 * @return the object at the top of the stack, if any
 * @throws NoSuchElementException if the stack is already empty
 */
 public Object pop() {

 }

CSE 143 Wi05 Final Exam Page 7 of 11

Question 8. (12 points) Snark hunt

You’re hunting for the Snark, and want to find the shortest path to it. You have a map that you can use to
plan your path. (We’ll give you a class Map that represents the map – you just need to use it.) The map
is a rectangular grid of squares, with numbered rows and columns starting at 0. You can only move to
adjacent squares to the left, right, up, or down (if they exist), not diagonally. Some squares are blocked –
the path can’t go through a blocked square. One square contains the Snark. The map will tell you if a
square is blocked or if the Snark is there. It’s possible that you can’t get to the Snark from your starting
point.

The length of a path is the number of squares in the path, counting the starting square. For instance, if
you start in row 2, column 3, and go right to 2, 4, down to 3, 4, right to 3, 5, that’s a path of length 4.

While you’re searching, it would be useless to go back into a square that’s already in the path you’re
trying out – that would just add extra length. The map lets you mark squares so you can tell if you’ve
already tried them. The map you’ll be given initially has no marks in it.

Write a method that starts at some square in the grid, given its row and column, and finds a best move to
make, that is, it returns the first step along a shortest path to the Snark. This return a String, "left", "right",
"up", or "down" to indicate the best move, or “here” if it’s already at the Snark. If it can’t get to the Snark
at all, it should just return an empty string.

You can add helper methods and classes if you need them, but you cannot define any instance or static
variables, or change the Map class. For full credit, you must use recursion. It’s ok if you have some
redundant code.

A description of the Map methods is on the next page, and after that is the declaration and javadoc for the
method you’ll write, and space for helper methods or classes on a blank page after that.

CSE 143 Wi05 Final Exam Page 8 of 11

Methods of class Map. (You can remove this page for reference while writing the solution)

/**
 * Returns the width of the grid.
 * @return the number of columns in the grid
 */
public int width()

/**
 * Returns the height of the grid.
 * @return the number of rows in the grid
 */
public int height()

/**
 * Make a copy of this Map. Nothing you do to the copy will change the original.
 * @return a copy of this Map.
 */
public Map copy()

/**
 * Is this square blocked?
 * @param row – row of the square being asked about
 * @param col – column of the square being asked about
 * @return true if the square is blocked
 * @throws ArrayIndexOutOfBounds if row or col are outside the grid
 */
public boolean isBlocked(int row, int col)

/**
 * Is the Snark in this square?
 * @param row – row of the square being asked about
 * @param col – column of the square being asked about
 * @return true if the Snark is in this square
 * @throws ArrayIndexOutOfBounds if row or col are outside the grid
 */
public boolean snarkHere(int row, int col)

/**
 * Mark this square.
 * @param row – row of the square being asked about
 * @param col – column of the square being asked about
 * @throws ArrayIndexOutOfBounds if row or col are outside the grid
 */
public void mark(int row, int col)

/**
 * Is this square marked?
 * @param row – row of the square being asked about
 * @param col – column of the square being asked about
 * @return true if the square is marked
 * @throws ArrayIndexOutOfBounds if row or col are outside the grid
 */
public boolean isMarked(int row, int col)

CSE 143 Wi05 Final Exam Page 9 of 11
/**
 * Using the given Map as a guide, choose the best move to make to get to the Snark
 * by a shortest path, starting from the given row and column. The path cannot go
 * through any blocked squares. If the Snark can be reached, return a String with
 * "here" if the Snark is in this square, or the best move to make, "left", "right",
 * "up", or "down". If there is no path to the Snark, return an empty String (not
 * null). (Note this only returns the first move along a shortest path.)
 *
 * @param row – the row of the square to start from
 * @param col – the column of the square to start from
 * @param map – a Map that tells what squares are blocked or occupied by the Snark
 * @return a String giving the first step along a shortest path to the Snark through
 * unblocked squares, or an empty String if there was no path to the Snark
 */
public String moveTowardSnark(int row, int col, Map map) {

}

CSE 143 Wi05 Final Exam Page 10 of 11

 Java Reference Information

Feel free to detach these pages and use them for reference as you work on the exam. This information is
identical to the reference information on the 2nd midterm. You may not need most (or even all) of it to
answer the questions on this exam.

class BufferedReader

 String readline() Return next line from input stream, or null
 if no more input. Can throw IOException.

class PrintWriter

 void print(arg) Print arg to the PrintWriter stream. The
 parameter can be any type
 void println() Terminate the current output line and move
 to the beginning of the next. line
 void println(arg) Print arg, then advance to the beginning
 of the next line

class String

 All of the search methods in class String return -1 if the item is not found

 int length() length of this string
 int indexOf(char ch) first position of ch
 int indexOf(char ch, int start) first position of ch
 starting from start
 int indexOf(String str) first position of str
 int indexOf(String str, int start) first position of str
 starting from start
 int lastIndexOf(char ch) last position of ch
 int lastIndexOf(char ch, int start) last position of ch searching
 backward from start
 int lastIndexOf(String str) last position of str
 int lastIndexOf(String str, int start) last position of str searching
 backward from start
 String substring(int start) substring of this string from
 position start to the end
 String substring(int start, end) substring of this string from
 position start to end-1
 String trim() copy of this string with leading
 and trailing whitespace
 deleted

CSE 143 Wi05 Final Exam Page 11 of 11

All Collection interfaces (List, Set) and classes (ArrayList, LinkedList, HashSet,
TreeSet)

 boolean add(Object obj)
 boolean addAll(Collection other)
 void clear()
 boolean contains(Object obj)
 Iterator iterator()
 boolean remove(Object obj)
 int size()
 Object[] toArray() // return an array containing all the
 // elements in this collection
In addition, all Collection classes provide a constructor that takes another Collection as a parameter
and creates a new collection whose initial contents are copied from that parameter. (i.e., public
ArrayList(Collection c), and similarly for other classes.)

Additional methods in List, ArrayList, LinkedList

 add(int position, Object obj)
 remove(int position)

Additional methods in LinkedList

 getFirst(), getLast(), addFirst(), addLast(), removeFirst(),
 removeLast()
 // these retrieve, add, and remove items at either end of the list.
 // remove returns the item removed from the list

Map, HashMap, TreeMap

 Object put(Object key, Object value)
 Object get(Object key)
 Object remove(Object key)
 Set keySet()
 Collection values()
 int size()

arrays
If a is a Java array, a.length is the number of elements in that array. If m is a 2-dimensional Java array,
m[k] refers to row k of the array, and m[k].length is the length of that row (which is the same for all
rows in a normal, rectangular array).

Exceptions

Some standard exceptions that might be useful: IllegalArgumentException,
IndexOutOfBoundsException, NoSuchElementException, NullPointerException.

