
CSE 143 Wi05 Midterm 2   Page 1 of 7 

Reference information about some standard Java library classes appears on the last pages 
of the test.  You can tear off these pages for easier reference during the exam if you like.  
 
Question 1.  (3 points)  Java categorizes some exceptions as checked (like IOException) 
and others as unchecked (like NullPointerException).  A method that might encounter 
checked exceptions either has to have a try-catch block to handle the exception or has to 
declare the exception in a throws clause in the method heading to indicate that the method 
might generate that exception.  But neither of these are required for unchecked exceptions.  
Why not? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Question 2.  (3 points)  The getSelectedFile method of a JFileChooser object 
returns a File object.  What exactly is this File object?  A string containing a file name, a 
disk file, something else? 



CSE 143 Wi05 Midterm 2   Page 2 of 7 

Question 3.  (6 points)   Consider the following code: 
 
public class Exceptional { 
  
  public void x() { 
    throw new IndexOutOfBoundsException(); 
  } 
   
  public void y(int n) { 
    try { 
      if (n > 10) { 
        x(); 
      } else { 
        z(); 
      } 
    } catch (IndexOutOfBoundsException e) { 
      System.out.println("index out of bounds caught in y"); 
    } catch (Exception e) { 
      System.out.println("exception caught in y"); 
    } 
  } 
   
  public void z() { 
    throw new NullPointerException(); 
  } 
} 
 
What happens when each of the following groups of statements are executed?  Indicate 
what output is produced or what unhandled exceptions are generated. 
 
(a) Exceptional ex = new Exceptional(); 
 ex.z(); 
 
 
 
 
 
(b) Exceptional ex = new Exceptional(); 
 ex.y(42); 
 
 
 
 
 
(c) Exceptional ex = new Exceptional(); 
 ex.y(5); 



CSE 143 Wi05 Midterm 2   Page 3 of 7 

Question 4.  (16 points)  One of the most important current uses of computer technology is 
to generate spam –  messages intended to entice people to buy products.  In this question, 
we want to explore some simple spam generating methods. 
 
(a) (8 points)  To generate “personalized” messages, we can start with a text that contains 
copies of a string that should be replaced by the name of the person we are sending the 
message to.  For instance, if the message string is 
 
 Dear *name*, Today, *name*, you can get stuff real cheap! 
  
a personalized message could be generated by replacing all occurrences of “*name*” with 
a particular name. 
 
Complete the definition of method personalize below so it returns a string where all 
occurrences of pattern have been replaced by target.  If for example, pattern is 
*name* and target is Pat, then replacing the pattern by the target in the above string 
would return the result Dear Pat, Today, Pat, you can get stuff real 
cheap! 
 
For full credit, you must use appropriate String functions to search for substrings and 
compute the result, instead of processing the strings one character at a time.  Reference 
information about String functions is included on the last pages of this test, which you 
can detach if that makes it easier to refer to the information. 
 
 /* Return a String that is a copy of text where every occurrence 
  * of pattern is replaced by target */ 
 public String personalize(String text, String pattern,  
             String target) { 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}



CSE 143 Wi05 Midterm 2   Page 4 of 7 

Question 4.  (b)  (8 points) Now we’d like to use the personalize method from part (a) 
to send messages to everyone whose name and email address appears in an input file.  The 
input file contains lines that each have a name and an email address in the following 
format: 
 
 Sam ssmith@msn.com 
 Janet jj@earthlink.com 
 
You can assume that there are no leading or trailing blanks on the lines, and that there is 
exactly one blank between the name and email address on each line. 
 
You should also assume that there is a method you can call to send email messages with the 
following specification. 
 
 /** send the message named text to the person with the  
   *   given email address */ 
 public void sendmail(String text, String address) { ... } 
 
And recall, for reference, that the personalize method has this specification: 
 
 /* Return a String that is a copy of text where every occurrence 
  * of pattern is replaced by target */ 
 public String personalize(String text, String pattern,  
             String target) { 
 
Complete the method sendMessages below. 
 
 /** Read the name/email information from stream names and 
  *  send personalized versions of message to each person on 
  *  that list where pattern is replaced by the person’s name */ 
 public void sendMessages(String message, String pattern, 
            BufferedReader names) { 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 }



CSE 143 Wi05 Midterm 2   Page 5 of 7 

Question 5. (8 points)  One of the operations we never got around to implementing for the 
SimpleArrayList class was inserting an object at a specified position – which implies 
creating an opening by sliding all later elements in the list to the right.  For example, if a 
list contains the strings 
 
 “huey”  “dewey” “louie” 
 
and we insert the string “donald" at position 1, then the resulting list should contain 
 
 “huey”  “donald” “dewey” “louie” 
 
Reminder: The instance variables for a SimpleArrayList are the following: 
 
  private Object[] items;          // items in this list are stored in 
  private int size;                // items[0..size-1] 
 
Complete the method add, below, so it adds the given object at the specified position. 
 
 /** Add obj to the list at position pos, sliding later items 
  *  to the right as needed. */ 
 public void add(Object obj, int pos) { 
  // ensure that space for a new entry is available 
  ensureSpareCapacity(1); 
 
  // add the new item at the specified location 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
} 



CSE 143 Wi05 Midterm 2   Page 6 of 7 

Java Reference Information 
 
Feel free to detach these pages and use them for reference as you work on the exam. 
 
class BufferedReader 
 
 String readLine()  Return next line from input stream, or null 
         if no more input.  Can throw IOException. 
 
class PrintWriter 
 
 void print(arg)   Print arg to the PrintWriter stream.  The 
         parameter can be any type 
 void println()   Terminate the current output line and move 
         to the beginning of the next. line 
 void println(arg)  Print arg, then advance to the beginning 
         of the next line 
  

class String 
 
All of the search methods in class String return -1 if the item is not found 
 
int length()      length of this string 
int indexOf(char ch)    first position of ch 
int indexOf(char ch, int start) first position of ch starting from start 
int indexOf(String str)   first position of str 
int indexOf(String str, int start) first position of str starting from start 
int lastIndexOf(char ch)   last position of ch 
int lastIndexOf(char ch, int start) last position of ch searching 
            backward from start  
int lastIndexOf(String str)  last position of str 
int lastIndexOf(String str, int start) last position of str searching 
                    backward from start 
String substring(int start)  substring of this string from position start to end 
String substring(int start, end) substring of this string from start to end-1 
String trim()      copy of this string with leading and trailing  
          whitespace deleted 
 



CSE 143 Wi05 Midterm 2   Page 7 of 7 

All Collection interfaces (List, Set) and classes (ArrayList, LinkedList, 
HashSet, TreeSet) 
 
 boolean add(Object obj) 
 boolean addAll(Collection other) 
 void clear() 
 boolean contains(Object obj) 
 Iterator iterator() 
 boolean remove(Object obj) 
 int size() 
 Object[] toArray()   // return an array containing all the 
          // elements in this collection 
  
In addition, all Collection classes provide a constructor that takes another Collection 
as a parameter and creates a new collection whose initial contents are copied from that 
parameter.  (i.e., public ArrayList(Collection c), and similarly for the other 
classes.) 
 
Additional methods in List, ArrayList, LinkedList 
 
 add(int position, Object obj) 
 remove(int position) 
 
Map, HashMap, TreeMap 
  
 Object put(Object key, Object value) 
 Object get(Object key) 
 Object remove(Object key) 
 Set keySet() 
 Collection values()       
 int size()  
 

arrays 
 
If a is a Java array, a.length is the number of elements in that array. 
 
If m is a 2-dimensional Java array, m[k] refers to row k of the array, and m[k].length is 
the length of that row (which is the same for all rows in a normal, rectangular array). 
 
 

Exceptions 
 
Some standard exceptions that might be useful: IllegalArgumentException, 
IndexOutOfBoundsException, NoSuchElementException, 
NullPointerException 


