
CSE143 Wi05 01-1

1/3/2005 (c) 2001-05 University of Washington 01-1

CSE 143

Programming as Modeling

Reading: Ch. 1-6

1/3/2005 (c) 2001-05 University of Washington 01-2

Building Virtual Worlds
• Much of programming can be viewed as building a model of a real

or imaginary world in the computer
• a banking program models real banks with customers, accounts, etc.
• a checkers program models a real game
• a fantasy game program models an imaginary world
• a word processor models an intelligent typewriter and documents

• Running the program (the model) simulates what would happen in
the modeled world

(And if the model is good for the intended purposes, the simulation tells us useful things
about the things we are modeling)

• Often it's a lot easier or safer to build models than the real thing
• Example: a tornado simulator

1/3/2005 (c) 2001-05 University of Washington 01-3

Java Tools for Modeling
• Objects in Java can model things in the (real or

imaginary) world
• The bank: Customers, employees, accounts, transactions...
• Checkers: The Checkerboard, pieces, players, game history
• Video game: Characters, landscapes, obstacles, weapons,

treasure, scores
• Documents: paragraphs, words, symbols, spelling dictionaries,

fonts, smart paper-clip
• Key notion: Objects have

• Responsibilities – what you can ask them to do
• Properties – what they know

1/3/2005 (c) 2001-05 University of Washington 01-4

Basic Java Mechanisms for Modeling
• A class describes a template or pattern for things;

an object or instance of a class is a particular thing
• Constructors model ways to create new instances
• Methods model actions that these things can perform (i.e., to

carry out their responsibilities)
• Messages (method calls) model requests from one thing to

another
• Instance variables model the state or properties of things
•public vs. private

• Instance variables should normally be private
• Methods should be public or private depending on whether they should be

visible to code in other classes

1/3/2005 (c) 2001-05 University of Washington 01-5

What Makes a Good Model?
• Often, the closer the model matches the (real or

imaginary) world, the better
• More likely it's an accurate model
• Easier for human readers of the program to understand what's

going on in the program
• Sometimes, a too detailed model of reality is not a good

thing
• Why?

1/3/2005 (c) 2001-05 University of Washington 01-6

What Else Makes a Good Model?
• The easier the model is to extend & evolve, the better

• May want to extend the model...
• May need to change the model...

• Sad law of life: “A Program is Never Finished”
• Or at least a useful program is never finished

• Why??

CSE143 Wi05 01-2

1/3/2005 (c) 2001-05 University of Washington 01-7

Coupling and Cohesion
• A qualitative way to evaluate the organization of classes

or modules
• Coupling – the degree to which a class interacts with or

depends on another class
• Cohesion – how well a class encapsulates a single

notion
• A system is more robust and easier to maintain if

• Coupling between classes/modules is minimized
• Cohesion within classes/modules is maximized

1/3/2005 (c) 2001-05 University of Washington 01-8

A Review Example
/** Representation of an employee in a personnel system
* @author Hal Perkins
* @version CSE143 Wi04 lecture example */

public class Employee {
// instance variables
private String name; // employee name
private int id; // employee id number
private double pay; // employee weekly pay
/** Construct a new employee with the give name, id number, and weekly pay
* @param name Employee's name
* @param id Employee's id number
*/

public Employee(String name, int id, double pay) {
this.name = name;
this.id = id;
this.pay = pay;

}
…

1/3/2005 (c) 2001-05 University of Washington 01-9

Employee Example (2)
/**
* Return the name of this employee
* @return Employee name
*/

public String getName() {
return name;

}

/**
* Return the id number of this employee
* @return Employee id number
*/

public int getId() {
return id;

}

…

1/3/2005 (c) 2001-05 University of Washington 01-10

Employee Example (3)
…

/**
* Return the pay earned by this employee
* @return Employee's pay for the current pay period
*/

public double getPay() {
return pay;

}

/** Set this employee’s pay
* @param newPayRate new pay rate for this employee
*/

public void setPay(double newPayRate) {
pay = newPayRate;

}
}

1/3/2005 (c) 2001-05 University of Washington 01-11

toString: Recommended for All Classes
• A method with this exact signature:

public String toString();

/** Return a string representation of this employee */
public String toString() {
return "Employee(name = " + name + ", id = " + id +
", pay = " + pay + ")";

}

• Java treats toString in a special way
• In many cases, will automatically call toString when a String

value is needed:
System.out.println(“The bank account: ” + account);

1/3/2005 (c) 2001-05 University of Washington 01-12

toString
• Good while debugging

System.out.println(anObject); // calls anObject.toString()
• Secret Java lore:

• All Objects in Java have a built-in, default toString method
• So why define your own??

CSE143 Wi05 01-3

1/3/2005 (c) 2001-05 University of Washington 01-13

JavaDoc
• Java provides a clean way of including documentation as part of

the source code – JavaDoc comments
• Begin with /** and end with */

• Can be automatically formatted to produce web documentation
• Built-in support in current DrJava, Eclipse; command-line tool available

• Special tags to control formatting
• @author – specify author
• @version – version number, date, etc.
• @param – description of a method parameter
• @return – description of a non-void method result
• Others (links, see also, …), plus can use arbitrary html

• Used to produce all online Java API documentation

1/3/2005 (c) 2001-05 University of Washington 01-14

Another Common Practice
• Place a static main method in each class to test or

demonstrate

/** Create and test some of the Employee operations */
public static void main (String[] args) {
Employee bob = new Employee("Joe Bob“, 314, 1000.00);
bob.setPay(1200);
System.out.println(bob.getName());
System.out.println(bob); // automatically calls bob.toString()

}

} // end of Employee

1/3/2005 (c) 2001-05 University of Washington 01-15

Required vs. Recommended
• Writing toString is "recommended"
• Creating main methods is "recommended"
• You've probably been given other recommendations:

• comments, variable naming, indentation, etc.
• Use this library, don't use that library

• Why bother, when the only thing that matters is whether
your program runs or not?
• Answer: Whether your program runs or not is not the only thing

that matters!
Yes, it needs to work, but people need to be able to read and understand it

1/3/2005 (c) 2001-05 University of Washington 01-16

Software Engineering and Practice
• Building good software is not just about getting it to

produce the right output
• Many other goals may exist
• "Software engineering" refers to practices which

promote the creation of good software, in all its aspects
• Some of this is directly code-related: class and method design
• Some of it is more external: documentation, style
• Some of it is higher-level: system architecture

• Attention to software quality is important in CSE143
• as it is in the profession

