
CSE143 Wi05 10-1

1/27/2005 (c) 2001-5, University of Washington 10-1

CSE 143 Java

Programming by Contract

Reading: Ch. 5

1/27/2005 (c) 2001-5, University of Washington 10-2

Overview
• Topics

• Kinds of errors
• Preconditions, postconditions, and invariants
• Specification as a contract
• Throwing Exceptions
• Assertions

1/27/2005 (c) 2001-5, University of Washington 10-3

Example: StringList class
• Here’s the interface of a class that implements a simple,

fixed-size list data structure. Operations:
class StringList { // a list of strings

StringList(int capacity); // create new StringList with given capacity
boolean isEmpty(); // = “this StringList is empty”
boolean isFull(); // = “this StringList is full”
int size(); // = # of Strings in this StringList
boolean add(String str); // add str to this StringList, result true

// if success
boolean contains(String str); // = “this StringList contains str”
String get(int pos); // return String at given position
String remove(int pos); // return String at given position and remove

// it from this StringList
1/27/2005 (c) 2001-5, University of Washington 10-4

StringList Instance Variables
• Representation is an array whose length is fixed when

the StringList is created, plus a count of the current
number of strings stored in the list

class StringList { // a list of strings
// instance variables
private String[] strings; // Strings in this StringList are stored in
private int size; // strings[0] through strings[size-1]
…

}

1/27/2005 (c) 2001-5, University of Washington 10-5

StringList: What Could Go Wrong?
• What kinds of errors could occur in either the

implementation or use of StringList
• This is a different question from how would one test for these

problems
• For each possible error

• What could go wrong?
• How should we deal with it?

1/27/2005 (c) 2001-5, University of Washington 10-6

Error Handling
• Software failures fall into two broad categories

• Internal programming errors (“bugs”)
• Failures because of interaction with external resources or

users (out of memory, file not found, improper use, etc.)
• Incorrectly formatted data and similar problems also

need to be handled, but that is part of normal processing
• For now, focus on software failures
• Principle: If a method detects it is going to fail, it must

do something appropriate to report the failure; it is never
acceptable to return to the caller as if nothing happened

CSE143 Wi05 10-2

1/27/2005 (c) 2001-5, University of Washington 10-7

Preconditions and Postconditions
• Methods typically make assumptions about the state of

the world before, during, and after they are executed
• Typically logical formulas: 0 <= size < capacity; the array is

sorted a[0] <= a[1] <= … <= a[size-1]; etc.
• Two key kinds of assumptions

• Precondition: Something that must be true before a method can
be called; a requirement

• Postcondition: Something that is guaranteed to be true after a
method terminates execution (provided the precondition was
true when it was called)

1/27/2005 (c) 2001-5, University of Washington 10-8

Preconditions & Postconditions
• What would be reasonable preconditions for

a square root function?

a method to insert new item into a list object?

• What would be reasonable postconditions for

a sort routine?

the constructor for a list object?

1/27/2005 (c) 2001-5, University of Washington 10-9

Class Invariants
• An invariant is a condition that should always be true at

a particular place in a program
• Important case: a class invariant –an invariant about

properties of class instances; often a relationship
between instance variables (state)
• Examples

0 <= size <= capacity
The list data is stored in items[0..size-1]

• Note: a class invariant might be false for a moment while a
method is updating related variables, but it must always be true
by the time a constructor or method terminates

1/27/2005 (c) 2001-5, University of Washington 10-10

Writing Bug-Free Software
• Preconditions, postconditions, and invariants are

incredibly useful
• Include all non-trivial ones as comments in the code

• These are essential parts of the design and a reader must
understand them to understand the code

• If you don’t write them down, the reader (who may be you) will
have to reconstruct them as best he/she can

• Whenever you update a variable, check any invariants
that refer to it to be sure the invariant still holds
• May need to update related variables to make this happen

1/27/2005 (c) 2001-5, University of Washington 10-11

Design by Contract
• The preconditions and postconditions of a method can

be viewed as a contract between the implementer of the
method and the client code that uses it

• Clearly specifies the responsibilities of both parties
• Client must ensure all preconditions are true before calling the

method
• Implementation must guarantee that postconditions are true,

provided the preconditions were true when the method was
called

(assuming that adequate resources are available and other requirements
are satisfied – see below)

1/27/2005 (c) 2001-5, University of Washington 10-12

Precondition Failures
• Principle: Crash early!

• The sooner a precondition failure is detected the better
• Who is responsible for checking?

• Most logical place is at the beginning of the called method

CSE143 Wi05 10-3

1/27/2005 (c) 2001-5, University of Washington 10-13

What if a precondition is not true?
• Suppose this method is called with pos < 0 or

pos >=size()?
/** Return list element at given position. Precondition: 0<=pos<size() */
String get (int pos) {

…
}

• What should we do?

1/27/2005 (c) 2001-5, University of Washington 10-14

What if a precondition is not true?
• One solution(?)

/** Return list element at given position. Precondition: 0<=pos<size()
String get (int pos) {

if (pos < 0 || pos >= size) {
System.out.println(“naughty user – pos has bad value in get”);
return null;

} else {
return strings[pos];

}
}

• Helpful error message, returns something user can check
• Good idea or not?

1/27/2005 (c) 2001-5, University of Washington 10-15

Critique
• Not a good idea for at least two reasons
• Should never have extra output in a method that is not

intended to produce output
• (bad cohesion; also, unexpected output might panic end user)

• Null as an error code (and error codes in general)
• Can it get confused with a legitimate return value?
• Will the programmer always remember to check?

(What do you think?)

1/27/2005 (c) 2001-5, University of Washington 10-16

Throwing Exceptions
• One good solution: throw an exception
• Basic idea: generate a runtime error, exactly as done for

things like out-of-bounds array subscripts or null
references

/** Return list element at given position. Precondition: 0<=pos<size
* @throws IndexOutOfBoundsException if pos is invalid */

String get (int pos) {
if (pos < 0 || pos >= size) {

throw new IndexOutOfBoundsException();
}
return strings[pos];

}

1/27/2005 (c) 2001-5, University of Washington 10-17

Details
• The statement

`throw new IndexOutOfBoundsException();

creates a new exception object and uses it to signal a
particular kind of error
• Simple case: halts execution with a suitable error message
• Not the same as a regular return statement – can terminate

many active methods at once if nobody catches and recovers
from the problem (coming next lecture)

We’ll also see how to define new kinds of exceptions (errors)

1/27/2005 (c) 2001-5, University of Washington 10-18

Some common standard Java exceptions
• IllegalArgumentException

Parameter value is inappropriate

• NullPointerException
Parameter value is null when it should not be
Use this instead of less specific IllegalArgumentException if it applies

• IndexOutOfBoundsException
Array or list index is out of range
Use this instead of IllegalArgumentException if it applies

CSE143 Wi05 10-4

1/27/2005 (c) 2001-5, University of Washington 10-19

How much checking should we do?
• Can overdo it

• Error checking code can overwhelm normal code
Harder to read, understand, modify

• Checking takes time; can have unacceptable performance
penalty

• Distinguish two cases
• Public methods: can’t trust the caller

Need to check parameters and signal errors whenever possible
• Non-public methods: programmer controls circumstances

under which method is called
Programmer has no one else to blame if something is wrong
Still, worth some sort of check during development to catch bugs

1/27/2005 (c) 2001-5, University of Washington 10-20

Assertions – New in Java 1.4
• Long-time feature of C/C++
• Idea: at any point in the code where some condition

should hold, we can write
assert <boolean-expression>;

• If <boolean-expression> is true, execution continues normally
• If false, execution stops with an error, or drops into a debugger

• Variation: can include a message in an assertion
assert <boolean-expression> : “error message written if assert fails”

1/27/2005 (c) 2001-5, University of Washington 10-21

Enabling Assertions
• Default: asserts are off in Java 1.4 – need to tell the

compiler to allow them & tell Java runtime to check them
• Set option in drjava preferences panel
• javac –language 1.4 option for command-line compiler

(this is used in the online turnin server for your assignments)
• “-ea” option in java command line and Eclipse project settings

1/27/2005 (c) 2001-5, University of Washington 10-22

Using Assert
• Class loader options can control whether assertions are

checked
• Guideline: use aggressively for consistency checking

during debugging
• Powerful development tool; helps code to crash early
• Use to check preconditions, but also postconditions,

invariants, and other conditions that should be true at
particular points in the code;

• Can be disabled during normal production use if overhead is
too high

Is this a good idea?

1/27/2005 (c) 2001-5, University of Washington 10-23

Assert vs Exceptions
• Main guideline

• Use assert to check for programming errors (bugs)
• Use exceptions to signal failures or problems during execution

(network connection fails, all object memory used up, …)
• What about checking preconditions?

• These are programming bugs, so use asserts, except that…
• … if asserts are disabled these will be missed with disastrous

results during execution
• Best practice: use asserts for internal checking, throw an

exception to signal precondition errors due to external client
code

1/27/2005 (c) 2001-5, University of Washington 10-24

Summary
• Use assertions and exceptions for disciplined error

handling
• Assert to catch bugs in your code; exceptions for dealing with

the outside world
• General principle: it is much better to fail early instead of

continuing execution in a buggy state

• Coming attraction: exception handling – reacting to and
recovering from problems

• Then: on to streams and files

