CSE 143

Program Efficiency & Introduction to Complexity Theory

2/17/2005

(c) 2001-5, University of Washington

ANALYSIS OF ALGORITHMIC COMPLEXITY

2/17/2005

(c) 2001-5, University of Washington

GREAT IDEAS IN COMPUTER

SCIENCE

16-2

Overview

- Measuring time and space used by algorithms
- Machine-independent measurements
- · Costs of operations
- Asymptotic complexity O() notation and complexity classes
- Comparing algorithms
- Performance tuning

2/17/2005

(c) 2001-5, University of Washington

16-3

Comparing Algorithms

- Example: We'll see two different list implementations
 - · Dynamic expanding array
 - Linked list
- We'll see multiple ways of implementing other kinds of collections
- Which implementations are "better"?
- How do we measure?
 - Stopwatch? Why or why not?

2/17/2005

(c) 2001-5, University of Washington

10-4

Program Efficiency & Resources

- Goal: Find way to measure "resource" usage in a way that is independent of particular machines or implementations
- Resources
 - Execution time
 - Execution space
 - · Network or disk bandwidth
 - others
- We will focus on execution time
 - Techniques/vocabulary apply to other resource measures

2/17/2005

(c) 2001-5, University of Washington

16-5

Example

• What is the running time of the following method?

```
// Return the sum of the elements in array.
double sum(double[] data) {
    double ans = 0.0;
    for (int k = 0; k < data.length; k++) {
        ans = ans + data[k];
    }
    return ans;
}
```

- How do we analyze this?
- · What does the question even mean?

2/17/2005

(c) 2001-5, University of Washington

16-6

Analysis of Execution Time

- 1. First: describe the *size* of the problem in terms of one or more parameters
 - For the sum method, the size of the data array makes sense
 - Often size of data structure, but can be magnitude of some numeric parameter, etc.
- 2. Then, count the number of *steps* needed *as a function of the problem size*
- Need to define what a "step" is
 - First approximation: one simple statement
 - More complex statements will be multiple steps

2/17/2005

(c) 2001-5, University of Washington

16-7

Cost of operations: Constant Time Ops

- Constant-time operations: each take one abstract time "step"
 - Simple variable declaration/initialization (double sum = 0.0;)
 - Assignment of numeric or reference values (var = value;)
 - Arithmetic operation (+, -, *, /, %)
 - Array subscripting (a[index])
 - Simple conditional tests (x < y, p != null)
- Operator new itself (not including constructor cost)
 Note: new takes significantly longer than simple arithmetic or assignment, but its cost is independent of the problem we're trying to analyze
- Watch out for things like method calls or constructor invocations that look simple, but can be expensive

(because of what happens when the body of the method/constructor executes – the actual call/return operations are constant time [more below])

2/17/2005

(c) 2001-5, University of Washington

16-8

Cost of operations: Zero-time Ops

- Can sometimes perform operations at compile time
 - · Nothing left to do at runtime
- Variable declarations without initialization double[] overdrafts;
- Variable declarations with compile-time constant initializers

```
static final int maxButtons = 3:
```

- Some casts (but not those that need a runtime check)
 int code = (int) '?';
- These are generally either ignored or treated as constant-time

2/17/2005

(c) 2001-5, University of Washington

16-9

Sequences of Statements

Cost of

S1; S2; ...; Sn

is sum of the costs of S1 + S2 + ... + Sn

2/17/2005

(c) 2001-5, University of Washington

16-10

Conditional Statement

 We're generally trying to figure out how long it might take to execute a statement (worst case), so the cost of

```
if (condition) {
     S1;
} else {
     S2;
}
```

is usually the max cost of S1 or S2 plus cost of the condition

- Other possibilities (less common)
 - · Best case use the min cost of S1 or S2
 - Expected (average) case probabilistic analysis needed

2/17/2005

(c) 2001-5, University of Washington

16-11

Analyzing Loops

- Basic analysis
 - 1. Calculate cost of each iteration
 - 2. Calculate number of iterations
 - Total cost is the product of these
 Caution sometimes need to add up the costs differently if the cost of each iteration is not roughly the same
- Nested loops
 - Total cost is number of iterations of the outer loop times the cost of the inner loop
- same caution as above

2/17/2005

(c) 2001-5, University of Washington

16-12

Method Calls

- Cost for calling a function is cost of...
 - cost of evaluating the arguments (constant or non-constant)
 - + cost of actually calling the function (constant overhead)
 - + cost of passing each parameter (normally constant time in Java for both numeric and reference values)
 - + cost of executing the function body (constant or nonconstant?)

System.out.print(lineNumber);

System.out.println("Answer is " + calculateResult(x, y*y+42.0));

 Note that "evaluating" and "passing" an argument are two different things

2/17/2005

(c) 2001-5, University of Washington

16-13

Exercise

- Analyze the running time of printMultTable
 - · Pick the problem size
- · Count the number of steps

```
// print multiplication table with
// n rows and columns
void printMultTable(int n) {
    for (int k=1; k <= n; k++) {
        printRow(k, n);
    }
}</pre>
```

// print row r with length n of a
// multiplication table
void printRow(int r, int n) {
 for (int k = 1; k <= n; k++) {
 System.out.print(r*k + " ");
 }
 System.out.println();
}</pre>

2/17/2005

(c) 2001-5, University of Washington

16-14

Analysis

2/17/2005

(c) 2001-5, University of Washington

16-15

Comparing Algorithms

 Suppose we analyze two algorithms and get these times (numbers of steps):

• Algorithm 1: 37n + 2n² + 120

• Algorithm 2: 50n + 42

How do we compare these? What really matters?

- Answer: In the long run, the thing that is most interesting is the cost as the problem size n gets large
 - What are the costs for n=10, n=100; n=1,000; n=1,000,000?
 - Mainstream computers are so fast these days that time needed to solve small problems is rarely of interest

Not necessarily so for slow, low-power, or embedded systems

2/17/2005

(c) 2001-5, University of Washington

16-16

Orders of Growth

· What happens as the problem size doubles?

N	log_2N	5N N	log ₂ N	N^2	2 ^N
8	3	40	24	64	256
16	4	80	64	256	65536
32	5	160	160	1024	~10 ⁹
64	6	320	384	4096	~10 ¹⁹
128	7	640	896	16384	~1038
256	8	1280	2048	65536	~1076
10000	13	50000	105	108	~103010

(c) 2001-5, University of Washington

Asymptotic Complexity

- Asymptotic: Behavior of complexity function as problem size gets large
 - · Only thing that really matters is higher-order term
 - · Can drop low order terms and constants
- The asymptotic complexity gives us a (partial) way to answer "which algorithm is more efficient"
 - Algorithm 1: 37n + 2n² + 120 is proportional to n²
 - Algorithm 2: 50n + 42 is proportional to n
- Graphs of functions are handy tool for comparing asymptotic behavior

2/17/2005

(c) 2001-5, University of Washington

Big-O Notation

 Definition: If f(n) and g(n) are two complexity functions, we say that

f(n) = O(g(n)) (pronounced f(n) is O(g(n)) or is order g(n)) if there is a constant c such that

 $f(n) \le c \cdot g(n)$

2/17/2005

for all sufficiently large n

2/17/2005

(c) 2001-5, University of Washington

16-19

Exercise 1

• Prove that 5n+3 is O(n)

2/17/2005

(c) 2001-5, University of Washington

16-20

Exercise 2

• Prove that $5n^2 + 42n + 17$ is $O(n^2)$

2/17/2005

(c) 2001-5, University of Washington

16-21

Implications

• The notation f(n) = O(g(n)) is *not* an equality

(yet another abuse of the = sign; c.f., assignment operator)

- Think of it as shorthand for
 - "f(n) grows at most like g(n)" or
 - · "f grows no faster than g" or
 - "f is bounded by g"
- O() notation is a worst-case analysis
 - · Generally useful in practice
 - Sometimes want *average-case* or *expected-time* analysis if worst-case behavior is not typical (but often harder to analyze)

2/17/2005

(c) 2001-5, University of Washington

16-22

Complexity Classes

• Several common complexity classes (problem size n)

• Constant time: O(k) or O(1)

• Logarithmic time: O(log n)

[Base doesn't matter. Why?]

Linear time: O(n)"n log n" time: O(n log n)

• Quadratic time: O(n²)

Cubic time:

...

• Exponential time: O(kn)

• O(nk) is often called polynomial time

 $O(n^3)$

2/17/2005

(c) 2001-5, University of Washington

16-23

Big-O Arithmetic

- For most common functions, comparison can be enormously simplified with a few simple rules of thumb
- Memorize complexity classes in order from smallest to largest: O(1), O(log n), O(n), O(n log n), O(n²), etc.
- Ignore constant factors

$$300n + 5n^4 + 6 + 2^n = O(n + n^4 + 2^n)$$

• Ignore all but highest order term

$$O(n + n^4 + 2^n) = O(2^n)$$

2/17/2005

(c) 2001-5, University of Washington

16-24

Rule of Thumb

- If the algorithm has polynomial time or better: practical
 - typical pattern: examining all data, a fixed number of times
- If the algorithm has exponential time: impractical
 - typical pattern: examine all combinations of data
- What to do if the algorithm is exponential?
 - · Try to find a different algorithm
 - Some problems can be proved not to have a polynomial solution
 - Other problems don't have known polynomial solutions, despite years of study and effort
 - Sometimes you settle for an approximation
 The correct answer most of the time, or an almost-correct answer all of the time

2/17/2005

(c) 2001-5, University of Washington

16 25

Computer Science Note

- Algorithmic complexity theory is one of the key intellectual contributions of Computer Science
- Typical problems
 - What is the worst/average/best-case performance of an algorithm?
 - What is the best complexity bound for all algorithms that solve a particular problem? (i.e., how intrinsically difficult is the problem – regardless of how clever a programmer you are?)
- Interesting and (in many cases) complex, sophisticated math
 - · Probabilistic and statistical as well as discrete
- Still some key open problems
 - Most notorious: P ?= NP

2/17/2005

(c) 2001-5, University of Washington

16-26

Analyzing List Operations (1)

- We can use O() notation to compare the costs of different list implementations
- Operation

Dynamic Array

Linked List

- · Construct empty list
- · Size of the list
- isEmpty
- clear

2/17/2005

(c) 2001-5, University of Washington

16-27

Analyzing List Operations (2)

Operation List **Dynamic Array**

Linked

- Add item to end of list
- Locate item (contains, indexOf)
- · Get an item at a given position
- Add or remove item once it has been located

2/17/2005

(c) 2001-5, University of Washington

16-28

Wait! Isn't this totally bogus??

- Write better code!!
 - More clever hacking in the inner loops
 (assembly language, special-purpose hardware in extreme cases)
- Moore's law: Speeds double every 18 months
 - Wait and buy a faster computer in a year or two!

• But ...

2/17/2005

(c) 2001-5, University of Washington

16-29

How long is a Computer-Day?

- If a program needs f(n) microseconds to solve some problem, how big a problem can it solve in a day?
 - One day = $1,000,000*24*60*60 = 9*10^{10}$ (aprox)

<u>f(n)</u>	n such that f(n) = one
n	9 * 10 ¹⁰
5n	2 * 10 ¹⁰
n log ₂ n	3 * 10 ⁹
n²	3 * 10 ⁵
n^3	4 * 10 ³
2 ⁿ	36

2/17/2005

(c) 2001-5, University of Washington

16-30

Speed Up The Computer by 1,000,000

 Suppose technology advances so that a future computer is 1,000,000 fast than today's

(Or you discover a clever hack that gives a 1,000,000 speedup)

(-)		, , , , , ,	· · · · · · · · · · · · · · · /
f(n)	original n	speedup on future m	<u>achine</u>
n	9 * 10 ¹⁰	million times	
5n	2 * 10 ¹⁰	million times	
n log₂n	3 * 10 ⁹	60,000 times	
n ²	3 * 10 ⁵	1,000 times	5 ⁴⁴
n³	4 * 10 ³	100 times	
2 ⁿ	36	+20	
		7	
2/17/2005	(c) 2001-5, University of Washington		16-31

Practical Advice For Speed Lovers

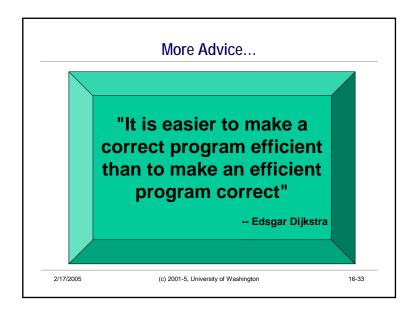
- First pick the right algorithm and data structure
 - Implement it clearly and carefully, insuring correctness
- \bullet Then optimize for speed but only where it matters
 - · Constants do matter in the real world
 - Clever coding can speed things up, but the result is likely to be harder to read, modify
 - Use tools to find hotspots concentrate on these

"Premature optimization is the root of all evil"

- Donald Knuth

2/17/2005

(c) 2001-5, University of Washington



Summary

- · Analyze algorithm sufficiently to determine complexity
- Compare algorithms by comparing asymptotic complexity
- For large problems, an asymptotically faster algorithm will always trump clever coding tricks
- Optimize/tune only things that actually matter, once you've picked the best algorithm

2/17/2005

(c) 2001-5, University of Washington

16-34