

GREAT IDEAS IN COMPUTER SCIENCE

Overview

- Measuring time and space used by algorithms

Comparing Algorithms

- Example: We'll see two different list implementations
- Dynamic expanding array
- Linked list
- Costs of operations
- Asymptotic complexity - O () notation and complexity
- We'll see multiple ways of implementing other kinds of collections classes
- Which implementations are "better"?
- Comparing algorithms
- How do we measure?
- Stopwatch? Why or why not?

2/17/2005
(c) 2001-5, University of Washington

Program Efficiency \& Resources

- Goal: Find way to measure "resource" usage in a way that is independent of particular machines or implementations
- Resources
- Execution time
- Execution space
- Network or disk bandwidth
- others
- We will focus on execution time
- Techniques/vocabulary apply to other resource measures

2117/2005
(c) 2001-5, University of Washington

Analysis of Execution Time

1. First: describe the size of the problem in terms of one or more parameters

- For the sum method, the size of the data array makes sense
- Often size of data structure, but can be magnitude of some numeric parameter, etc.

2. Then, count the number of steps needed as a function of the problem size

- Need to define what a "step" is
- First approximation: one simple statement
- More complex statements will be multiple steps

Example

- What is the running time of the following method?
// Return the sum of the elements in array.
double sum(double[] data) $\{$
double ans $=0.0$;
for (int $k=0 ; k$ data.length; $k++$) \{
ans $=$ ans + data $[k]$;
\}
return ans;
$\}$
- How do we analyze this?
- What does the question even mean?

$2117 / 2005$	(c) 2001-5, University of Washington

Cost of operations: Constant Time Ops

- Constant-time operations: each take one abstract time "step"
- Simple variable declaration/initialization (double sum =0.0;)
- Assignment of numeric or reference values (var = value;)
- Arithmetic operation (+, -, *, $l, \%)$
- Array subscripting (a[index])
- Simple conditional tests ($x<y, p$!= null)
- Operator new itself (not including constructor cost)

Note: new takes significantly longer than simple arithmetic or assignment, but its cost is independent of the problem we're trying to analyze

- Watch out for things like method calls or constructor invocations that look simple, but can be expensive
(because of what happens when the body of the method/constructor executes - the actual call/return operations are constant time [more below])
(c) 2001-5, University of Washington

16-8

Cost of operations: Zero-time Ops

- Can sometimes perform operations at compile time - Nothing left to do at runtime
- Variable declarations without initialization
double[] overdrafts;
- Variable declarations with compile-time constant initializers
static final int maxButtons $=3$;
- Some casts (but not those that need a runtime check) int code = (int) '?';
- These are generally either ignored or treated as constant-time

2117/2005
(c) 2001-5, University of Washington

Conditional Statement

- We're generally trying to figure out how long it might take to execute a statement (worst case), so the cost of
if (condition) \{
S1;
\}else \{
S2;
\}
is usually the max cost of S1 or S2 plus cost of the condition
- Other possibilities (less common)
- Best case - use the min cost of S1 or S2
- Expected (average) case - probabilistic analysis needed

$2 / 17 / 2005$	(c) 2001-5, University of Washington	$16-11$

Sequences of Statements

- Cost of

S1; S2; ...; Sn
is sum of the costs of $\mathrm{S} 1+\mathrm{S} 2+\ldots+\mathrm{Sn}$

Analyzing Loops

- Basic analysis

1. Calculate cost of each iteration
2. Calculate number of iterations
3. Total cost is the product of these

Caution - sometimes need to add up the costs differently if the cost of each iteration is not roughly the same

- Nested loops
- Total cost is number of iterations of the outer loop times the cost of the inner loop
- same caution as above
(c) 2001-5, University of Washington

16-12

Method Calls

- Cost for calling a function is cost of...
cost of evaluating the arguments (constant or non-constant) + cost of actually calling the function (constant overhead)
+ cost of passing each parameter (normally constant time in Java for both numeric and reference values)
+ cost of executing the function body (constant or nonconstant?)
System.out.print(lineNumber);
System.out.println("Answer is " + calculateResult(x, $\left.y^{*} y+42.0\right)$);
- Note that "evaluating" and "passing" an argument are two different things

Analysis		

Exercise

- Analyze the running time of printMultTable
- Pick the problem size
- Count the number of steps
// print multiplication table with
// n rows and columns
void printMultTable(int n) $\{$
for (int $k=1 ; k<=n ; k++$) $\{$
printRow(k, n);

$$
\text { System.out.print((} \mathrm{r}^{*} \mathrm{k}+\text { " "); }
$$

\}
\}

2/17/2005
(c) 2001-5, University of Washington
// print row r with length n of a // multiplication table void printRow(int r, int n) \{

$$
\text { for (int } k=1 ; k<=n ; k++)\{
$$

\}
System.out.println();
\}

Comparing Algorithms

- Suppose we analyze two algorithms and get these times (numbers of steps):
- Algorithm 1: $37 n+2 n^{2}+120$
- Algorithm 2: $50 \mathrm{n}+42$

How do we compare these? What really matters?

- Answer: In the long run, the thing that is most interesting is the cost as the problem size n gets large
- What are the costs for $n=10, n=100 ; n=1,000 ; n=1,000,000$?
- Mainstream computers are so fast these days that time needed to solve small problems is rarely of interest
Not necessarily so for slow, low-power, or embedded systems

$2 / 17 / 2005$	(c) 2001-5, University of Washington	$16-16$

Orders of Growth					
-What happens as the problem size doubles?					
N	$\log _{2} \mathrm{~N}$	5N	N $\log _{2} \mathrm{~N}$	\mathbf{N}^{2}	2^{N}
8	3	40	24	64	256
16	4	80	64	256	65536
32	5	160	160	1024	$\sim 10^{9}$
64	6	320	384	4096	-1019
128	7	640	896	16384	$\sim 10^{38}$
256	8	1280	2048	65536	$\sim 10^{76}$
10000	13	50000	10^{5}	10^{8}	-103010
2117/2005		(c) 2001-5	-5, University of Wa		16-17

Asymptotic Complexity

- Asymptotic: Behavior of complexity function as problem size gets large
- Only thing that really matters is higher-order term
- Can drop low order terms and constants
- The asymptotic complexity gives us a (partial) way to answer "which algorithm is more efficient"
- Algorithm 1: $37 n+2 n^{2}+120$ is proportional to n^{2}
- Algorithm 2: $50 n+42$ is proportional to n
- Graphs of functions are handy tool for comparing asymptotic behavior

Big-O Notation

- Definition: If $f(\mathrm{n})$ and $\mathrm{g}(\mathrm{n})$ are two complexity functions,

Exercise 1

we say that
$f(n)=O(g(n)) \quad($ pronounced $f(n)$ is $O(g(n))$ or is order $g(n))$
if there is a constant c such that
$\mathrm{f}(\mathrm{n}) \leq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$
for all sufficiently large n

Exercise 2

- Prove that $5 n^{2}+42 n+17$ is $0\left(n^{2}\right)$

Implications

- The notation $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n})$) is not an equality
(yet another abuse of the = sign; c.f., assignment operator)
- Think of it as shorthand for
- "f(n) grows at most like $\mathrm{g}(\mathrm{n})$ " or
- "f grows no faster than g" or
- "f is bounded by g"
- $\mathrm{O}($) notation is a worst-case analysis
- Generally useful in practice
- Sometimes want average-case or expected-time analysis if worst-case behavior is not typical (but often harder to analyze)

$2 / 17 / 2005$	(c) 2001-5, University of Washington	$16-22$

Complexity Classes

- Several common complexity classes (problem size n)
- Constant time: $\quad \mathrm{O}(\mathrm{k})$ or $\mathrm{O}(1)$
- Logarithmic time: $\mathrm{O}(\log \mathrm{n}) \quad$ [Base doesn't matter. Why?]
- Linear time: $\quad O(n)$
- " $n \log n$ " time: $\quad O(n \log n)$
- Quadratic time: $\quad \mathrm{O}\left(\mathrm{n}^{2}\right)$
- Cubic time: $\quad O\left(n^{3}\right)$
- Exponential time: $\mathrm{O}\left(\mathrm{k}^{\mathrm{n}}\right)$
- $O\left(n^{k}\right)$ is often called polynomial time

2/17/2005
(c) 2001-5, University of Washington

Big-O Arithmetic

- For most common functions, comparison can be enormously simplified with a few simple rules of thumb
- Memorize complexity classes in order from smallest to largest: $O(1), O(\log n), O(n), O(n \log n), O\left(n^{2}\right)$, etc.
- Ignore constant factors
$300 n+5 n^{4}+6+2^{n}=0\left(n+n^{4}+2^{n}\right)$
- Ignore all but highest order term $\mathrm{O}\left(\mathrm{n}+\mathrm{n}^{4}+2^{n}\right)=0\left(2^{n}\right)$

Rule of Thumb

- If the algorithm has polynomial time or better: practical - typical pattern: examining all data, a fixed number of times
- If the algorithm has exponential time: impractical
- typical pattern: examine all combinations of data
- What to do if the algorithm is exponential?
- Try to find a different algorithm
- Some problems can be proved not to have a polynomial solution
- Other problems don't have known polynomial solutions, despite years of study and effort
- Sometimes you settle for an approximation

The correct answer most of the time, or an almost-correct answer all of the time

| $2 / 17 / 2005$ | (c) 2001-5, University of Washington |
| :--- | :--- | :--- |

Computer Science Note

- Algorithmic complexity theory is one of the key intellectual contributions of Computer Science
- Typical problems
- What is the worst/average/best-case performance of an algorithm?
- What is the best complexity bound for all algorithms that solve a particular problem? (i.e., how intrinsically difficult is the problem - regardless of how clever a programmer you are?)
- Interesting and (in many cases) complex, sophisticated math
- Probabilistic and statistical as well as discrete
- Still some key open problems
- Most notorious: P ?= NP

Analyzing List Operations (1)

- We can use $O()$ notation to compare the costs of

Analyzing List Operations (2)

- Operation Dynamic Array Linked

List

- Add item to end of list
- Locate item (contains, indexOf)
- Get an item at a given position
- Add or remove item once it
has been located

2/17/2005
(c) 2001-5, University of Washington

16-28

Wait! Isn't this totally bogus??

- Write better code!!
- More clever hacking in the inner loops
(assembly language, special-purpose hardware in extreme cases)
- Moore's law: Speeds double every 18 months
- Wait and buy a faster computer in a year or two!

- But ...
$2 / 17 / 2005 \quad$ (c) 2001-5. University of Washington $16-29$

Speed Up The Computer by 1,000,000

- Suppose technology advances so that a future computer is $1,000,000$ fast than today's
(Or you discover a clever hack that gives a $1,000,000$ speedup)

$\mathrm{f}(\mathrm{n})$	original n	speedup on future machine
n	$9 * 10^{10}$	million times
5 n	$2 * 10^{10}$	million times
$\mathrm{n} \log _{2} \mathrm{n}$	$3 * 10^{9}$	60,000 times
n^{2}	$3 * 10^{5}$	1,000 times
n^{3}	$4 * 10^{3}$	100 times
2^{n}	36	+20
$217 / 2005$		(c) 2001-5, Univesity of washington

How long is a Computer-Day?

- If a program needs $f(n)$ microseconds to solve some problem, how big a problem can it solve in a day?
- One day $=1,000,000 * 24^{*} 60 * 60=9 * 10^{10}($ aprox $)$
$\mathrm{f}(\mathrm{n}) \quad \mathrm{n}$ such that $\mathrm{f}(\mathrm{n})=$ one day
n $\quad 9 * 10^{10}$
$5 n \quad 2 * 10^{10}$
$n \log _{2} n \quad 3 * 10^{9}$
$\mathrm{n}^{2} \quad 3 * 10^{5}$
$\mathrm{n}^{3} \quad 4 * 10^{3}$
$2^{\text {n }} \quad 36$
$2 / 17 / 2005 \quad$ (c) 2001-5, University of Washington $16-30$

Practical Advice For Speed Lovers

- First pick the right algorithm and data structure
- Implement it clearly and carefully, insuring correctness
- Then optimize for speed - but only where it matters
- Constants do matter in the real world
- Clever coding can speed things up, but the result is likely to be harder to read, modify
- Use tools to find hotspots - concentrate on these

Summary

- Analyze algorithm sufficiently to determine complexity
- Compare algorithms by comparing asymptotic complexity
- For large problems, an asymptotically faster algorithm will always trump clever coding tricks
- Optimizeltune only things that actually matter, once you've picked the best algorithm

