
CSE143 Wi05 16-1

2/17/2005 (c) 2001-5, University of Washington 16-1

CSE 143

Program Efficiency &
Introduction to Complexity Theory

2/17/2005 (c) 2001-5, University of Washington 16-2

GREAT IDEAS IN COMPUTER
SCIENCE

ANALYSIS OF ALGORITHMIC COMPLEXITY

2/17/2005 (c) 2001-5, University of Washington 16-3

Overview
• Measuring time and space used by algorithms
• Machine-independent measurements
• Costs of operations
• Asymptotic complexity – O() notation and complexity

classes
• Comparing algorithms
• Performance tuning

2/17/2005 (c) 2001-5, University of Washington 16-4

Comparing Algorithms
• Example: We’ll see two different list implementations

• Dynamic expanding array
• Linked list

• We’ll see multiple ways of implementing other kinds of
collections

• Which implementations are “better”?
• How do we measure?

• Stopwatch? Why or why not?

2/17/2005 (c) 2001-5, University of Washington 16-5

Program Efficiency & Resources
• Goal: Find way to measure "resource" usage in a way

that is independent of particular machines or
implementations

• Resources
• Execution time
• Execution space
• Network or disk bandwidth
• others

• We will focus on execution time
• Techniques/vocabulary apply to other resource measures

2/17/2005 (c) 2001-5, University of Washington 16-6

Example
• What is the running time of the following method?

// Return the sum of the elements in array.
double sum(double[] data) {

double ans = 0.0;
for (int k = 0; k < data.length; k++) {

ans = ans + data[k];
}
return ans;

}

• How do we analyze this?
• What does the question even mean?

CSE143 Wi05 16-2

2/17/2005 (c) 2001-5, University of Washington 16-7

Analysis of Execution Time
1. First: describe the size of the problem in terms of one

or more parameters
• For the sum method, the size of the data array makes sense
• Often size of data structure, but can be magnitude of some

numeric parameter, etc.
2. Then, count the number of steps needed as a function

of the problem size
• Need to define what a "step" is

• First approximation: one simple statement
• More complex statements will be multiple steps

2/17/2005 (c) 2001-5, University of Washington 16-8

Cost of operations: Constant Time Ops
• Constant-time operations: each take one abstract time “step”

• Simple variable declaration/initialization (double sum = 0.0;)
• Assignment of numeric or reference values (var = value;)
• Arithmetic operation (+, -, *, /, %)
• Array subscripting (a[index])
• Simple conditional tests (x < y, p != null)
• Operator new itself (not including constructor cost)

Note: new takes significantly longer than simple arithmetic or assignment, but its cost is
independent of the problem we’re trying to analyze

• Watch out for things like method calls or constructor invocations
that look simple, but can be expensive

(because of what happens when the body of the method/constructor executes – the
actual call/return operations are constant time [more below])

2/17/2005 (c) 2001-5, University of Washington 16-9

Cost of operations: Zero-time Ops
• Can sometimes perform operations at compile time

• Nothing left to do at runtime
• Variable declarations without initialization

double[] overdrafts;

• Variable declarations with compile-time constant
initializers

static final int maxButtons = 3;

• Some casts (but not those that need a runtime check)
int code = (int) ′?′;

• These are generally either ignored or treated as
constant-time

2/17/2005 (c) 2001-5, University of Washington 16-10

Sequences of Statements
• Cost of

S1; S2; …; Sn

is sum of the costs of S1 + S2 + … + Sn

2/17/2005 (c) 2001-5, University of Washington 16-11

Conditional Statement
• We’re generally trying to figure out how long it might

take to execute a statement (worst case), so the cost of
if (condition) {

S1;
} else {

S2;
}

is usually the max cost of S1 or S2 plus cost of the
condition

• Other possibilities (less common)
• Best case – use the min cost of S1 or S2
• Expected (average) case – probabilistic analysis needed

2/17/2005 (c) 2001-5, University of Washington 16-12

Analyzing Loops
• Basic analysis

1. Calculate cost of each iteration
2. Calculate number of iterations
3. Total cost is the product of these

Caution – sometimes need to add up the costs differently if
the cost of each iteration is not roughly the same

• Nested loops
• Total cost is number of iterations of the outer loop times the

cost of the inner loop
• same caution as above

CSE143 Wi05 16-3

2/17/2005 (c) 2001-5, University of Washington 16-13

Method Calls
• Cost for calling a function is cost of...

cost of evaluating the arguments (constant or non-constant)
+ cost of actually calling the function (constant overhead)
+ cost of passing each parameter (normally constant time in

Java for both numeric and reference values)
+ cost of executing the function body (constant or non-

constant?)
System.out.print(lineNumber);
System.out.println("Answer is " + calculateResult(x, y*y+42.0));

• Note that "evaluating" and "passing" an argument are
two different things

2/17/2005 (c) 2001-5, University of Washington 16-14

Exercise
• Analyze the running time of

printMultTable
• Pick the problem size
• Count the number of steps

// print multiplication table with
// n rows and columns
void printMultTable(int n) {

for (int k=1; k <= n; k++) {
printRow(k, n);

}
}

// print row r with length n of a
// multiplication table
void printRow(int r, int n) {

for (int k = 1; k <= n; k++) {
System.out.print(r*k + “ ”);

}
System.out.println();

}

2/17/2005 (c) 2001-5, University of Washington 16-15

Analysis

2/17/2005 (c) 2001-5, University of Washington 16-16

Comparing Algorithms
• Suppose we analyze two algorithms and get these times

(numbers of steps):
• Algorithm 1: 37n + 2n2 + 120
• Algorithm 2: 50n + 42

How do we compare these? What really matters?
• Answer: In the long run, the thing that is most

interesting is the cost as the problem size n gets large
• What are the costs for n=10, n=100; n=1,000; n=1,000,000?
• Mainstream computers are so fast these days that time needed

to solve small problems is rarely of interest
Not necessarily so for slow, low-power, or embedded systems

2/17/2005 (c) 2001-5, University of Washington 16-17

Orders of Growth
• What happens as the problem size doubles?

N log2N 5N N log2N N2 2N
===

8 3 40 24 64 256
16 4 80 64 256 65536
32 5 160 160 1024 ~109

64 6 320 384 4096 ~1019

128 7 640 896 16384 ~1038

256 8 1280 2048 65536 ~1076

10000 13 50000 105 108 ~103010

2/17/2005 (c) 2001-5, University of Washington 16-18

Asymptotic Complexity
• Asymptotic: Behavior of complexity function as problem

size gets large
• Only thing that really matters is higher-order term
• Can drop low order terms and constants

• The asymptotic complexity gives us a (partial) way to
answer “which algorithm is more efficient”
• Algorithm 1: 37n + 2n2 + 120 is proportional to n2

• Algorithm 2: 50n + 42 is proportional to n
• Graphs of functions are handy tool for comparing

asymptotic behavior

CSE143 Wi05 16-4

2/17/2005 (c) 2001-5, University of Washington 16-19

Big-O Notation
• Definition: If f(n) and g(n) are two complexity functions,

we say that
f(n) = O(g(n)) (pronounced f(n) is O(g(n)) or is order g(n))

if there is a constant c such that
f(n) ≤ c • g(n)

for all sufficiently large n

2/17/2005 (c) 2001-5, University of Washington 16-20

Exercise 1
• Prove that 5n+3 is O(n)

2/17/2005 (c) 2001-5, University of Washington 16-21

Exercise 2
• Prove that 5n2 + 42n + 17 is O(n2)

2/17/2005 (c) 2001-5, University of Washington 16-22

Implications
• The notation f(n) = O(g(n)) is not an equality

(yet another abuse of the = sign; c.f., assignment operator)

• Think of it as shorthand for
• “f(n) grows at most like g(n)” or
• “f grows no faster than g” or
• “f is bounded by g”

• O() notation is a worst-case analysis
• Generally useful in practice
• Sometimes want average-case or expected-time analysis if

worst-case behavior is not typical (but often harder to analyze)

2/17/2005 (c) 2001-5, University of Washington 16-23

Complexity Classes
• Several common complexity classes (problem size n)

• Constant time: O(k) or O(1)
• Logarithmic time: O(log n) [Base doesn’t matter. Why?]

• Linear time: O(n)
• “n log n” time: O(n log n)
• Quadratic time: O(n2)
• Cubic time: O(n3)

…
• Exponential time: O(kn)

• O(nk) is often called polynomial time

2/17/2005 (c) 2001-5, University of Washington 16-24

Big-O Arithmetic
• For most common functions, comparison can be

enormously simplified with a few simple rules of thumb
• Memorize complexity classes in order from smallest to

largest: O(1), O(log n), O(n), O(n log n), O(n2), etc.
• Ignore constant factors

300n + 5n4 + 6 + 2n = O(n + n4 + 2n)
• Ignore all but highest order term

O(n + n4 + 2n) = O(2n)

CSE143 Wi05 16-5

2/17/2005 (c) 2001-5, University of Washington 16-25

Rule of Thumb
• If the algorithm has polynomial time or better: practical

• typical pattern: examining all data, a fixed number of times
• If the algorithm has exponential time: impractical

• typical pattern: examine all combinations of data
• What to do if the algorithm is exponential?

• Try to find a different algorithm
• Some problems can be proved not to have a polynomial

solution
• Other problems don't have known polynomial solutions,

despite years of study and effort
• Sometimes you settle for an approximation

The correct answer most of the time, or an almost-correct answer all of the time

2/17/2005 (c) 2001-5, University of Washington 16-26

Computer Science Note
• Algorithmic complexity theory is one of the key intellectual

contributions of Computer Science
• Typical problems

• What is the worst/average/best-case performance of an algorithm?
• What is the best complexity bound for all algorithms that solve a particular

problem? (i.e., how intrinsically difficult is the problem – regardless of how
clever a programmer you are?)

• Interesting and (in many cases) complex, sophisticated math
• Probabilistic and statistical as well as discrete

• Still some key open problems
• Most notorious: P ?= NP

2/17/2005 (c) 2001-5, University of Washington 16-27

Analyzing List Operations (1)
• We can use O() notation to compare the costs of

different list implementations
• Operation Dynamic Array Linked List

• Construct empty list

• Size of the list

• isEmpty

• clear

2/17/2005 (c) 2001-5, University of Washington 16-28

Analyzing List Operations (2)
• Operation Dynamic Array Linked

List
• Add item to end of list

• Locate item (contains, indexOf)

• Get an item at a given position

• Add or remove item once it
has been located

2/17/2005 (c) 2001-5, University of Washington 16-29

Wait! Isn’t this totally bogus??
• Write better code!!

• More clever hacking in the inner loops
(assembly language, special-purpose hardware in extreme cases)

• Moore’s law: Speeds double every 18 months
• Wait and buy a faster computer in a year or two!

• But …
2/17/2005 (c) 2001-5, University of Washington 16-30

How long is a Computer-Day?
• If a program needs f(n) microseconds to solve some

problem, how big a problem can it solve in a day?
• One day = 1,000,000*24*60*60 = 9*1010 (aprox)
f(n) n such that f(n) = one day
n 9 * 1010

5n 2 * 1010

n log2n 3 * 109

n2 3 * 105

n3 4 * 103

2n 36

CSE143 Wi05 16-6

2/17/2005 (c) 2001-5, University of Washington 16-31

Speed Up The Computer by 1,000,000

• Suppose technology advances so that a future
computer is 1,000,000 fast than today's

(Or you discover a clever hack that gives a 1,000,000 speedup)
f(n) original n speedup on future machine
n 9 * 1010 million times
5n 2 * 1010 million times
n log2n 3 * 109 60,000 times
n2 3 * 105 1,000 times
n3 4 * 103 100 times
2n 36 +20

2/17/2005 (c) 2001-5, University of Washington 16-32

Practical Advice For Speed Lovers
• First pick the right algorithm and data structure

• Implement it clearly and carefully, insuring correctness
• Then optimize for speed – but only where it matters

• Constants do matter in the real world
• Clever coding can speed things up, but the result is likely to be

harder to read, modify
• Use tools to find hotspots – concentrate on these

“Premature optimization is the root of all evil”
– Donald Knuth

2/17/2005 (c) 2001-5, University of Washington 16-33

"It is easier to make a
correct program efficient
than to make an efficient

program correct"
-- Edsgar Dijkstra

More Advice…

2/17/2005 (c) 2001-5, University of Washington 16-34

Summary
• Analyze algorithm sufficiently to determine complexity
• Compare algorithms by comparing asymptotic

complexity
• For large problems, an asymptotically faster algorithm

will always trump clever coding tricks
• Optimize/tune only things that actually matter, once

you’ve picked the best algorithm

