

Sorting

- Binary search is a huge speedup over sequential search
- But requires the list be sorted
- Slight Problem: How do we get a sorted list?
- Maintain the list in sorted order as each word is added
- Sort the entire list when needed
- Many, many algorithms for sorting have been invented and analyzed
- Let's invent some!

Insert for a Sorted List

- One possibility: ensure the list is always sorted as it is created

Picture

- Draw your picture here
- Exercise: Assume that words[0..size-1] is sorted. Place new word in correct location so modified list remains sorted
- Assume that there is spare capacity for the new word
- Before coding:
- Draw pictures of an example situation, before and after
- Write down the postconditions for the operation
// given existing list words[0..size-1], insert word in correct place and increase size void insertWord(String word)

```
        size++;
```

 \}

Insertion Sort

Insertion Sort As A Card Game Operation

- Once we have insertWord working...

- We can sort a list in place by repeating the insertion
- A bit like sorting a hand full of cards dealt one by one:
- Pick up $1^{\text {st }}$ card - it's sorted, the hand is sorted
- Pick up $2^{\text {nd }}$ card; insert it after or before $1^{\text {st }}$ - both sorted operation
- Pick up $3^{\text {rd }}$ card; insert it after, between, or before $1^{\text {st }}$ two
-
- Each time:
- Determine where new card goes
- Make room for the newly inserted card and place it there
\}

Insertion Sort As Invariant Progression

Insertion Sort Performance

- Cost of each insertWord operation:
- Number of times insertWord is executed:
- Total cost:
- Can we do better?
3/3/2005 (c) 2001-5, University of Washington \quad 23-10

Analysis

- Why was binary search so much more effective than sequential search?
- Answer: binary search divided the search space in half each time; sequential search only reduced the search space by 1 item per iteration
-Why is insertion sort $O\left(n^{2}\right)$?
- Each insert operation only gets 1 more item in place at cost O(n)
- O(n) insert operations
-Can we do something similar for sorting?

Where are we on the chart?					
N	$\log _{2} \mathrm{~N}$	5N	$\mathrm{N} \log _{2} \mathrm{~N}$	N^{2}	$2^{\text {N }}$
8	3	40	24	64	256
16	4	80	64	256	65536
32	5	160	160	1024	$\sim 10{ }^{9}$
64	6	320	384	4096	-1019
128	7	640	896	16384	-1038
256	8	1280	2048	65536	$\sim 10^{76}$
10000	13	50000	10^{5}	10^{8}	$\sim 10^{3010}$
3132005			01-5, Univestity of Was	ingon	23-12

Divide and Conquer Sorting

- Idea: something similar to binary search

1. divide the sorting problem into two subproblems;
2. recursively sort each subproblem;
3. combine results

- Want division and combination at the end to be fast
- Want to be able to sort two halves independently
- This algorithm strategy is called divide and conquer

Code for QuickSort

```
// Sort words[0..size-1]
    void quickSort() {
        qsort(0, size-1);
    }
    // Sort words[lo..hi]
    void qsort(int lo, int hi) {
        // quit if empty partition
        if (lo > hi) { return; }
        int pivotLocation = partition(lo, hi); // partition array and return pivot loc
        qsort(lo, pivotLocation-1)
        qsort(pivotLocation+1, hi)
    }


\section*{Quicksort}
- Invented by C. A. R. Hoare (1962)
- Idea
- Pick an element of the list: the pivot
- Place all elements of the list smaller than the pivot in the half of the list to its left; place larger elements to the right
- Recursively sort each of the halves
- Before looking at any code, see if you can draw pictures based just on the first two steps of the description
3/3/2005 (c) 2001-5, University of Washington

\section*{Recursion Analysis}
- Base case? Yes.
// quitif empty partition
if \((l 0>\) hi) \(\{\) return; \(\}\)
- Recursive cases? Yes
qsort(lo, pivotLocation-1)
qsort(pivotLocation+1, hi);
- Each recursive cases work on a smaller subproblem, so algorithm will terminate

\section*{A Small Matter of Programming}
- Partition algorithm
- Pick pivot
- Rearrange array so all smaller element are to the left, all larger to the right, with pivot in the middle

\section*{- Partition is not recursive}
- Fact of life: partition can be a bit tricky to get right
- Pictures and invariants are your friends here
- How do we pick the pivot?
- For now, keep it simple - use the first item in the interval
- Better strategies exist


\section*{Partition design}
- We need to partition words[lo..hi]
- Pick words[lo] as the pivot
- Picture:

\section*{Partition Algorithm: PseudoCode}
// Partition words[0...hi]; return location of pivot in range lo. hi
int partition(int lo, int hi) \(\{\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Partition Test} \\
\hline \begin{tabular}{l}
- Check: partition(0,7) \\
0 orange \\
1 pear \\
2 apple \\
3 rutabaga \\
4 aardvark \\
5 cherry \\
6 banana \\
7 kumquat
\end{tabular} & \\
\hline 3 3/3/2005 \(\quad\) (c) 2001-5, University of Washington & 23-21 \\
\hline
\end{tabular}

\section*{Complexity of QuickSort}
- Each call to Quicksort (ignoring recursive calls):
- Each call of partition( ) is \(O(n)\) where \(n\) is size of the part of array being sorted
Note: This n is smaller than the N of the original problem
- Some O(1) work
- Total \(=O(n)\) ( \(n\) is the size of array part being sorted)
- Including recursive calls:
- Two recursive calls at each level of recursion, each partitions
"half" the array at a cost of \(O(n / 2)\)
- How many levels of recursion?


\section*{QuickSort Performance (Ideal Case)}
- Each partition divides the list parts in half
- Sublist sizes on recursive calls: \(n, n / 2, n / 4, n / 8 \ldots\)
- Total depth of recursion: \(\qquad\)
- Total work at each level: \(O(n)\)
- Total cost of quicksort: \(\qquad\) \(!\)
- For a list of 10,000 items
- Insertion sort: \(\mathbf{O ( n ^ { 2 } ) : ~ 1 0 0 , 0 0 0 , 0 0 0}\)
- Quicksort: \(\mathbf{O ( n \operatorname { l o g } n ) : ~} 10,000 \log _{2} 10,000=132,877\)
\begin{tabular}{lll}
\(3 / 3 / 2005\) & (c) 2001-5, University of Washington & \(23-24\)
\end{tabular}

\section*{Worst Case for QuickSort}
- If we're very unlucky, each pass through partition removes only a single element.

- In this case, we have \(N\) levels of recursion rather than \(\log _{2} \mathrm{~N}\). What's the total complexity?

3/3/2005
(c) 2001-5, University of Washington

23-25

\section*{QuickSort Performance (Worst Case)}
- Each partition manages to pick the largest or smallest item in the list as a pivot
- Sublist sizes on recursive calls:
- Total depth of recursion: \(\qquad\)
- Total work at each level: \(O(n)\)
- Total cost of quicksort: \(\qquad\) !

\section*{QuickSort as an Instance of Divide and Conquer}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Generic Divide and \\
Conquer
\end{tabular} & QuickSort \\
\hline 1. Divide & \begin{tabular}{l} 
Pick an element of the list: the pivot \\
Place all elements of the list smaller than the \\
pivot in the half of the list to its left; place \\
larger elements to the right
\end{tabular} \\
\hline \begin{tabular}{l} 
2. Solve subproblems \\
separately (and \\
recursively)
\end{tabular} & Recursively sort each of the halves \\
\hline \begin{tabular}{l} 
3. Combine \\
subsolutions to get \\
overall solution
\end{tabular} & Surprise! Nothing to do \\
\begin{tabular}{l} 
3/32005
\end{tabular} & \begin{tabular}{l} 
(c) 2001-5, Univesity of Wastington
\end{tabular} \\
\hline
\end{tabular}

\section*{Another Divide-and-Conquer Sort: Mergesort}
- 1. Split array in half
- just take the first half and the second half of the array, without rearranging
- 2. Sort the halves separately
- 3. Combining the sorted halves ("merge")
- repeatedly pick the least element from each array
- compare, and put the smaller in the resulting array
- example: if the two arrays are
\(\begin{array}{ll}5 & 6\end{array}\)
2
The "merged" array is
156121315202130
- note: we will need a second array to hold the result

3/3/2005 \(\quad\) (c) 2001-5, University of Washington

\section*{Summary}

\section*{- Divide and Conquer}
- Algorithm design strategy that exploits recursion
- Divide original problem into subproblems
- Solve each subproblem recursively
- Can sometimes yield dramatic performance improvements
- Sorting
- Quicksort, mergesort: classic divide and conquer algorithms

\section*{Quicksort vs MergeSort}
- Mergesort always has subproblems of size \(\mathrm{n} / 2\)
- Which means guaranteed \(O(n \log n)\)
- But mergesort requires an extra array for the result
- No problem if you're sorting disk or tape files
- Can be a problem if you're trying to sort large lists in main memory
- In practice, quicksort is the most commonly used general-purpose sort
- Pretty easy to pick pivots well, so expected time is \(O(n \log n)\)
- Doesn't require extra space for a copy of the data
\(3 / 3 / 2005 \quad\) (c) 2001-5, University of Washington
23-30```

