CSE 143, Winter 2009
Sample Midterm Exam #2

1. Stacks and Queues. Write a method nt er | eave that accepts a queue of integers as a parameder an
rearranges the elements by alternating the elenfenmts the first half of the queue with those frohet
second half of the queue. For example, supposeiableq stores the following sequence of values:

front [1, 2, 3, 4, 5 6, 7, 8 9, 10] back

and we make the call oht er| eave(q) ;, the queue should store the following values dfercall:

front [1, 6, 2, 7, 3, 8 4, 9, 5 10] back
To understand the result, consider the two halveki® list. The first half i§ 1, 2, 3, 4, 5] and the
second half i§6, 7, 8, 9, 10]. These are combined in an alternating fashicioim a sequence of
interleave pairs: the first values from each halatd 6), then the second values from each hah{®7),

then the third values from each half (3 and 8), sman. In each pair, the value from the first baglpears
before the value from the second half.

The previous example uses sequential integers ke i interleaving more obvious, but the samegs®c
can be applied to any sequence of even lengtheXample, ifg had instead stored these values:

front [2, 8, -5, 19, 7, 3, 24, 42] back
Then the method would have rearranged the lisetoime:
front [2, 7, 8 3, -5, 24, 19, 42] back

Your method should throw an | egal Ar gunent Except i on if the queue does not have even size. You
may use one stack as auxiliary storage to soh&eploblem. You may not use any other auxiliaryadat
structures to solve this problem, although you ltave as many simple variables as you like. You nwy
use recursion to solve this problem. For full aregbur solution must run in @J time, wheren represents
the size of the queue. Use tesue interface andt ack/Li nkedLi st classes discussed in lecture.

You have access to the following two methods any cadl them as needed to help you solve the problem

public static void s2q(Stack<lInteger> s, Queue<lnteger> q) {
while (!s.isEnmpty()) {
g. add(s. pop()); /1l Transfers the entire contents
} /1l of stack s to queue q

}

public static void g2s(Queue<integer> g, Stack<lnteger> s) {
while (!'q.isEnpty()) {
s. push(q.renove()); /'l Transfers the entire contents
} /'l of queue q to stack s

2. Java Collections Framework. Write a methodini on that accepts two maps (whose keys and values are
both integers) as parameters, and returns a newthaapepresents a merged union of the two original
maps. For example, if two maps andn®? contain these pairs:

{7=1, 18=5, 42=3, 76=10, 98=2, 234=50} ml
{7=2, 11=9, 42=-12, 98=4, 234=0, 9999=3} n2

The call ofuni on(nl, nR) should return a map that contains the followinggpa
{7=3, 11=9, 18=5, 42=-9, 76=10, 98=6, 234=50, 9999=3}

The "union” of two mapsl andm2 is a new map that contains every key fnraothand every key fronm2.
Each value stored in your "union” map should bestima of the corresponding value(s) for that keynin
andm?2, or if the key exists in only one of the two magh&t map's corresponding value should be used. Fo
example, in the maps above, the key 98 existstim imaps, so the result contains the sum of itsegaftom

the two maps, 2 + 4 = 6. The key 9999 exists iy one of the two maps, so its sole value of 3esexl as

its value in the result map.

You may assume that the maps passed areutdt, though either map (or both) could be empty. Tiou
the pairs are shown in sorted order by key abowve,should not assume that the maps passed to g st
their keys in sorted order, and the map you retiees not need to store its keys in any particuldermn

You may create one collection of your choice asilauy storage to solve this problem. You can hasge
many simple variables as you like. You shouldmotify the contents of the maps passed to your odeth
For full credit your code must run in less tham®time wheren is the combined number of pairs in the
two maps.

3. Linked Nodes. Write the code that will turn the Before picturelow into the After picture by modifying
links between the nodes shown and/or creating redes as needed. There may be more than one way to
write the code, but you are NOT allowed to change existing node'dat a field value. You also should
not create newti st Node objects unless necessary to add new values toh#i@, but you may create a
single Li st Node variable to refer to any existing node if you likdéf a variable does not appear in the
"after" picture, it doesn't matter what value istadter the changes are made.

To help maximize partial credit in case you makstakes, we suggest that you include optional consnen
with your code that describe the links you arengyio change, as shown in Section 7's solution.code

Before After

4|£l list —3| 4 ;Zlfl
/]

list2 —3 3

||St_>1 > 2

\ 4

\ 4

\ 4

Assume that you are using thiest Node class as defined in lecture and section:

public cl ass ListNode {
public int data; /1 data stored in this node
public ListNode next; // a link to the next node in the |ist

public ListNode() { ... }
public ListNode(int data) { ... }
public ListNode(int data, ListNode next) { ... }

4. Linked Lists. Write a method enovelLast that could be added to the nkedl ntLi st class that
removes the last occurrence (if any) of a giveaget from the list of integers. For example, sigepihat a
variable namedi st stores this sequence of values:

[3, 2, 3, 3, 19, 8, 3, 43, 64, 1, 0, 3]

If we repeatedly make the call of st . r enovelLast (3) ;, then the list will take on the following sequenc
of values after each call:

after first call: [3, 2, 3, 3, 19, 8, 3, 43, 64, 1, 0]
after second call: [3, 2, 3, 3, 19, 8, 43, 64, 1, 0]
after third call: [3, 2, 3, 19, 8, 43, 64, 1, 0]

after fourth call: [3, 2, 19, 8, 43, 64, 1, 0]

after fifth call: [2, 19, 8, 43, 64, 1, 0]

after sixth call: [2, 19, 8, 43, 64, 1, 0]

Notice that once we reach a point where no morec®ar in the list, calling the method has no dffec

Assume that we are adding this method to lthekedl nt Li st class as seen in lecture and as shown
below. You may not call any other methods of tls<to solve this problem.

public cl ass LinkedlntList {
private ListNode front;

methods

5. Recursive Tracing. For each call to the following method, indicateat output is produced:

public void nystery(int x, int y) {

it (x>y) {
Systemout.print("*");

} elseif (x ==vy) {
Systemout.print("=" +y + "=");

} else {
Systemout.print(y + " ");
nystery(x + 1, y - 1);
Systemout.print(" " + X);

Call Output

nystery(3, 3);

nystery(5, 1);

nystery(l, 5);

nystery(2, 7);

nystery(1l, 8);

6. Recursive Programming. Write a recursive methodepeat that accepts a stringand an integen as
parameters and that returns a string consistimgcopies ofs. For example:

Call Value Returned
repeat ("hell 0", 3) "hel | ohel | ohel | 0"
repeat("this is fun", 1) "this is fun"
repeat ("wow', O0) "
repeat ("hi ho! ", 5) "hi ho! hi ho! hi ho! hi ho! hi ho! "

You should solve this problem by concatenatinghgiusing the- operator. String concatenation is an
expensive operation, so it is best to minimize rthenber of concatenation operations you performr Fo
example, for the catlepeat ("f 00", 500), it would be inefficient to perform 500 differecwncatenation
operations to obtain the result. Most of the dredll be awarded on the correctness of your sofuti
independent of efficiency. The remaining creditl we awarded based on your ability to minimize the
number of concatenation operations performed.

Your method should throw an | egal Ar gunent Except i on if passed a negative value for You are
not allowed to construct any structured objecteothanSt ri ngs (no arrayLi st, Scanner, etc.) and
you may not use any loops to solve this problem; st use recursion.

