
CSE 143 SAMPLE MIDTERM

1. (5 points) In some methods, you wrote code to check if a certain precondition was
held. If the precondition did not hold, then you threw an exception. This leads to
robust code by catching client code misusing your methods. This seems like a great
idea, so when would you NOT want to check for the precondition in a method? Why
wouldn’t you? (You may use no more than 30 words.)

2. (5 points) Recall the definition of the ListNode class:

public class ListNode {
 int data;
 ListNode next;
}

We can print a linked list using the following method:

 public static void print(ListNode front) {
 ListNode current = front;
 while (current != null) {
 System.out.println(current.data + “ “);
 current = current.next;
 if (current == front) {
 break;
 }
 }
 }

Starting from the node pointed to by front, draw one or more nodes and link them
together in such a way that the call print(front) will not “behave” properly.

front:

3. (8 points) Consider the following method:

public void mystery(int n) {
 if (n >= 7) {
 System.out.println(n);
 } else {
 System.out.print(n);
 System.out.print(n);
 mystery(n + 7);
 }
}

For each call below, indicate what output is produced by the method. If the call
results in infinite recursion, write out the first 5 characters followed by “…”.

 Method Call Output Produced

mystery(-1) ___________________________
mystery(711) ___________________________
mystery(0) ___________________________
mystery(-5) ___________________________

4. (8 points) Consider the following method:

public void mystery(int n) {
 if (n == 0) {
 System.out.print(n);
 } else {
 System.out.print(“(”);
 mystery(n – 1);
 System.out.print(n);
 mystery(n – 1);
 System.out.print(“)”);
 }
}

For each call below, indicate what output is produced by the method. If the call
results in infinite recursion, write out the first 5 characters followed by “…”.

 Method Call Output Produced

mystery(2) ___________________________
mystery(0) ___________________________
mystery(-1) ___________________________
mystery(1) ___________________________

5. (20 points) A palindrome reads the same backward or forward. The number 12321 is
a palindrome, because if you start from the left side or the right side, it reads exactly
the same way. Write a method isPalindrome that takes an integer array nums
and returns true or false if the array of numbers constitute a palindrome in the
sense that the first element matches the last element; the second element matches the
second-to-last element, and so on. Do NOT use recursion.

Examples where isPalindrome would return true:

Examples where isPalindrome would return false:

123 2 24 2 123

123 2 214 99 99 214 2 123

123 2 24 1 123

123 2 214 99 98 214 2 125

6. (10 points) What is the running time of this method? Circle one: O(1) O(n)

 public int add100(int[] array) {
 if (array.length < 100) {
 return 0;
 }

 int sum = 0;
 for (int i = 0; i < 100; i++) {
 sum += array[i];
 }
 return sum;
 }

 Explain your answer in 30 words or less.

7. (20 points) Recall the definition of the ListNode:

public class ListNode {
 int data;
 ListNode next;
}

Assume that we define a class SortedLinkedIntList that is similar to
LinkedIntList, except that the data stored in the nodes are in sorted order:

public class SortedLinkedIntList {

 private ListNode front;

 <methods>
 }

Write a method mode(void) for the SortedLinkedIntList class that returns
the mode of the numbers in the list. The mode of a set of a numbers is the number
that appears the most frequently. If there is a tie, return any of the numbers that share
the highest frequency. If the list is empty, throw an IllegalStateException.

For example, if the list contained [1,1,1,4,4,4,4,4,4,5,6,6,70,99,99], then a call to
mode() would return 4, since it appears the most frequently (six times). If the list
contained [1,4,4,7,7,11,25,25,99], then your method can return either 4, 7, or 25,
because they all share the highest frequency (two times).

Stack Interface

// Interface Stack defines a set of operations for manipulating a
// LIFO (Last In First Out) structure that can be used to store
// objects.

public interface Stack<E> {
 // post: given value is pushed onto the top of the stack
 public void push(E value);

 // pre : !isEmpty()
 // post: removes and returns the value at the top of the stack
 public E pop();

 // post: returns true if the stack is empty, false otherwise
 public boolean isEmpty();

 // post: returns the current number of element in the stack
 public int size();
}

Queue Interface

// Interface Queue defines a set of operations for manipulating a
// FIFO (First In First Out) structure that can be used to store
// objects.

public interface Queue<E> {
 // post: given value inserted at the end of the queue
 public void enqueue(E value);

 // pre : !isEmpty()
 // post: removes and returns the value at the front of the queue
 public E dequeue();

 // post: returns true if the queue is empty, false otherwise
 public boolean isEmpty();

 // post: returns the current number of element in the queue
 public int size();
}

8. (30 points) Write a method pushNumTimes that takes a Queue q as an argument
and returns a Stack. Assume that q is storing Integer objects. Each integer
value i at position n (where the object at the front of the queue has position 1) in the
queue will be replaced by an Integer object with an integer value of (i * n) on
the stack. The contents of the queue do not have to be preserved.

For illustration purposes, let a queue’s contents be represented as a list of numbers,
where the leftmost number represents the front of the queue; let a stack’s contents be
represented as a list of numbers where the leftmost number represents the top of the
stack. Suppose q initially contained [6, 4, 5, 3], then the stack returned from a call to
pushNumTimes(q) will have [6, 8, 15, 12].

For your convenience, the Queue and Stack interfaces are on the previous page.
The names of the classes that implement those interfaces are LinkedQueue and
ArrayStack, respectively. Both classes have constructors that take no arguments.

 If q initially contained:

 position: 1 2 3 4

Then the returned stack
would contain:

6

8

15

12

6 4 5 3

9. (20 points) Consider the following definitions:

 public class Apple extends Date {
 public void method2() {
 System.out.println(“Apple2”);
 }
 }

 public class Banana {
 public void method2() {
 System.out.println(“Banana2”);
 }
 }

 public class Cherry extends Date {
 public void method2() {
 System.out.println(“Cherry2”);
 }

 public void method1() {
 super.method1();
 System.out.println(“Cherry1”);
 }
 }

 public class Date extends Banana {
 public void method1() {
 System.out.println(“Date1”);
 }

 public void method2() {
 System.out.println(“Date2”);
 method1();
 }
 }

 And assuming the following variables have been defined:

 Object var1 = new Cherry();
 Banana var2 = new Date();
 Banana var3 = new Cherry();
 Apple var4 = new Apple();

 In the table below, indicate in the right-hand column the output produced by the
statement in the left-hand column. If the statement produces more than one line of
output, indicate the line breaks with slashes as in "a/b/c" to indicate three lines of
output with "a" followed by "b" followed by "c". If the statement causes an error,
fill in the right-hand column with either the phrase "compiler error" or "runtime error"
to indicate when the error would be detected.

 Statement Output

 var1.method1(); ____________________________

 var2.method1(); ____________________________

 var3.method1(); ____________________________

 var4.method1(); ____________________________

 ((Cherry)var2).method1(); ____________________________

 ((Date)var2).method2(); ____________________________

 ((Date)var1).method2(); ____________________________

 ((Cherry)var1).method1(); ____________________________

 ((Cherry)var4).method1(); ____________________________

 ((Date)var3).method2(); ____________________________

10. (20 points) Using recursion, write a method times that takes two integers a and b
as parameters and returns their product, i.e., a * b. You are to multiply them by
using a series of additions. You may use +, -, comparison operators (>, >=, <, <=,
==, !=), and Boolean operators (&&, ||). You may NOT use *, /, any loops (i.e.,
for or while) or any method from the Java library.

You may find the following equality useful: a * b = b + (a – 1) * b

