
1 

CSE 143 
Lecture 1 

Review: Arrays and objects 

slides created by Marty Stepp and Ethan Apter 
http://www.cs.washington.edu/143/ 

2 

Arrays (7.1) 
• array: An object that stores many values of the same type. 

–  element:  One value in an array. 
–  index:  A 0-based integer to access an element from an array. 

index 0 1 2 3 4 5 6 7 8 9 

value 12 49 -2 26 5 17 -6 84 72 3 

element 0 element 4 element 9 



2 

3 

Array declaration 
type[] name = new type[length]; 

–  Example: 
 int[] numbers = new int[10]; 

–  All elements' values are initially 0. 

index 0 1 2 3 4 5 6 7 8 9 

value 0 0 0 0 0 0 0 0 0 0 

4 

Accessing elements 
  name[index]         // access 
  name[index] = value;   // modify 

–  Example: 

 numbers[0] = 27; 
 numbers[3] = -6; 

 System.out.println(numbers[0]); 
 if (numbers[3] < 0) { 
     System.out.println("Element 3 is negative"); 
 } 

index 0 1 2 3 4 5 6 7 8 9 

value 0 0 0 0 0 0 0 0 0 0 

index 0 1 2 3 4 5 6 7 8 9 

value 27 0 0 -6 0 0 0 0 0 0 



3 

5 

Out-of-bounds 
•  Legal indexes: between 0 and the array's length - 1. 

–  Accessing any index outside this range will throw an 
ArrayIndexOutOfBoundsException. 

• Example: 
 int[] data = new int[10]; 
 System.out.println(data[0]);       // okay 
 System.out.println(data[9]);       // okay 
 System.out.println(data[-1]);      // exception 
 System.out.println(data[10]);      // exception 

index 0 1 2 3 4 5 6 7 8 9 

value 0 0 0 0 0 0 0 0 0 0 

6 

The length field 
name.length 

• An array's length field stores its number of elements. 

 for (int i = 0; i < numbers.length; i++) { 
     System.out.print(numbers[i] + " "); 
 } 
 // output: 0 2 4 6 8 10 12 14 

–  NOTE: It does not use parentheses like a String's .length(). 

index 0 1 2 3 4 5 6 7 

value 0 2 4 6 8 10 12 14 



4 

7 

Quick initialization 
type[] name = {value, value, … value}; 

–  Example: 
 int[] numbers = {12, 49, -2, 26, 5, 17, -6}; 

–  Useful when you know what the array's elements will be. 
–  The compiler figures out the size of the array. 

index 0 1 2 3 4 5 6 

value 12 49 -2 26 5 17 -6 

8 

Array as parameter 
public static type methodName(type[] name) { 

–  Example: 
 public static double average(int[] numbers) { 
     ... 
 } 

• Call: 
methodName(arrayName); 

–  Example: 
 int[] scores = {13, 17, 12, 15, 11}; 
 double avg = average(scores); 



5 

9 

Array as return 
public static type[] methodName(parameters) { 

–  Example: 

 public static int[] countDigits(int n) { 
     int[] counts = new int[10]; 
     ... 
     return counts; 
 } 

• Call: 
type[] name = methodName(parameters); 

–  Example: 

 int[] tally = countDigits(229231007); 
 System.out.println(Arrays.toString(tally)); 

10 

The Arrays class 
• Class Arrays in package java.util has useful static 

methods for manipulating arrays: 

Method name Description 
equals(array1, array2) returns true if the two arrays contain the 

same elements in the same order 

fill(array, value) sets every element in the array to have the 
given value 

sort(array) arranges the elements in the array into 
ascending order 

toString(array) returns a string representing the array, 
such as "[10, 30, 17]" 



6 

11 

Exercise 
• Write a method named stutter that accepts an array of 

integers as a parameter and returns a new array, twice as long 
as the original, with two copies of each original element. 

–  If the method were called in the following way: 

 int[] a = {4, 7, -2, 15, 6}; 
 int[] a2 = stutter(a); 
 System.out.println(Arrays.toString(a2)); 

–  The output produced would be: 

 [4, 4, 7, 7, -2, -2, 15, 15, 6, 6] 

12 

Exercise solutions 
public static int[] stutter(int[] a) { 
    int[] result = new int[a.length * 2]; 
    for (int i = 0; i < a.length; i++) { 
        result[2 * i] = a[i]; 
        result[2 * i + 1] = a[i]; 
    } 
    return result; 
} 

public static int[] stutter(int[] a) { 
    int[] result = new int[a.length * 2]; 
    for (int i = 0; i < result.length; i++) { 
        result[i] = a[i / 2]; 
    } 
    return result; 
} 



7 

13 

Testing code 
• Q: How can we tell if our stutter method works properly? 

–  A: We must test it. 

• Q: How do we test code? 
–  A: Call the method several times and print/examine the results. 

• Q: Can we test all possible usages of this method? 
Q: Can we prove that the stutter code has no bugs? 
–  A: No; exhaustive testing is impractical/impossible for most code. 
–  A: No; testing finds bugs but cannot prove the absence of bugs. 

14 

How to test code 
•  test case: Running a piece of code once on a given input. 

• Q: Which cases should we choose to test? 
–  equivalence classes of input : Think about kinds of inputs: 

• positive vs. negative numbers vs.  0;   null  (maybe) 
• unique values vs. duplicates (consecutive and non-consecutive) 
• an empty array;  a 1-element array;  a many-element array 

• Q: What are some properties to look for in testing code? 
–  boundaries : Hits cases close to a relevant boundary, e.g. the 

maximum allowed value, the first/last element in an array, etc. 
–  code coverage : Hits all paths through code (if/elses, etc.) 
–  preconditions : What does the method assume?  Does the code 

ever violate those assumptions? 



8 

15 

Exercise 
• Write a short piece of code that tests the stutter method. 

–  Decide on a group of test input cases. 

–  For each test case: 
• Print the array's contents before and after stuttering. 
• Print whether the test was successful or failed. 

16 

Exercise solution 1 
    public static void main(String[] args) { 
        int[] a1 = {1, 2, 4, 5, 6}; 
        int[] a2 = stutter(a1); 
        System.out.println(Arrays.toString(a2)); 
        ... 
    } 

•  Pros: 
–  simple, short 

• Cons: 
–  must manually check output to see if it is correct 
–  must copy/paste to create each test case (redundant) 



9 

17 

Exercise solution 2 
    public static void main(String[] args) { 
        test(new int[] {1, 2, 4, 5, 6, 8},  
             new int[] {1, 1, 2, 2, 4, 4, 5, 5, 6, 6, 8, 8}); 
        test(new int[] {0, 0, 7, 9},  
             new int[] {0, 0, 0, 0, 7, 7, 9, 9}); 
        test(new int[] {-50, 95, -9876}, 
             new int[] {-50, -50, 95, 95, -9876, -9876}); 
        test(new int[] {42}, new int[] {42, 42}); 
        test(new int[] {}, new int[] {}); 
    } 

    public static void test(int[] a, int[] expected) { 
        int[] a2 = stutter(a); 
        System.out.print(Arrays.toString(a) + " -> " + 
                         Arrays.toString(a2) + " : "); 
        if (Arrays.equals(a2, expected)) { 
            System.out.println("Pass"); 
        } else { 
            System.out.println("FAIL!!!"); 
        } 
    } 

18 

Object: iPod 

(ok, so it’s an old iPod) 

<http://www.takeitapart.net/photos/apple_1gen_ipod/> 



10 

19 

Object: iPod 
• Why did MP3 players, like the iPod, replace CD players? 

–  MP3 players are more resistant to skipping 

–  MP3 players are smaller 

–  MP3 players can store more music (a person’s entire library!) 
• No need to swap CD’s! 

Both true for 
years before 
MP3 players 
became 
mainstream 

The important reason! 

20 

Object Motto 

An object encapsulates state and behavior 



11 

21 

An object encapsulates state and behavior 

• State: what an object knows 

–  Data, usually in the form of variables 

–  MP3 player’s state 
• Am I on or off? 
• Am I playing music? 
• What song am I playing? 
• How loud is my volume? 
• How many times have I played I’m On A Boat? 
• etc 

22 

An object encapsulates state and behavior 

• Behavior: what an object does 

–  Actions, usually in the form of methods 

–  MP3 player’s behavior 
• Turn on/off 
• Play music 
• Pause music 
• Increase volume 
• Increase bass 
• etc 



12 

23 

An object encapsulates state and behavior 

How many of you know how to use this? 
How many of you know how to build this? 

<http://www.takeitapart.net/photos/apple_1gen_ipod/> 

24 

An object encapsulates state and behavior 

<http://www.takeitapart.net/photos/apple_1gen_ipod/> 

Poor iPod. 



13 

25 

• Client view 
–  Knows what an object can do 
–  MP3 client view 

• Can turn object on/off, start music, increase volume, etc 

•  Implementer/implementation view 
–  Knows exactly how an object works 
–  MP3 implementer view 

• Can see exactly how a “turn on” signal affects all parts of the object 

• Switching back and forth between these two viewpoints can be 
confusing at first.  But you’ll get used to it. 

An object encapsulates state and behavior 

26 

• Encapsulation: hiding the implementation details from clients 

–  The client should only know what is necessary to use the object 

–  To understand, it might help to pretend that all clients are malicious 
• They will use everything you give them to try to break your object 

–  The MP3 player is well encapsulated 
• none of us has a clue about exactly how it works 
• …and yet we can use it without difficulty 
• …and we haven’t figured out how to make it do weird things, like 

playing songs backwards 

An object encapsulates state and behavior 


