
1

CSE 143
Lecture 3

ArrayIntList

slides created by Ethan Apter and Marty Stepp
http://www.cs.washington.edu/143/

2

remove

• ArrayIntList has an add, so it should also have a remove

• remove will take an index as a parameter

• But how do we remove from ArrayIntList?
–  Is it enough to just set the value to 0 or -1?

• No! 0 and -1 can represent real, valid data

•  Instead we need to:
–  shift all remaining valid data, so there is no “hole” in our data
–  decrement size, so there’s one less piece of data

2

3

Implementing remove
• How can we remove an element from the list?

–  list.remove(2); // delete 9 from index 2

index 0 1 2 3 4 5 6 7 8 9
value 3 8 9 7 5 12 0 0 0 0

size 6

index 0 1 2 3 4 5 6 7 8 9
value 3 8 7 5 12 0 0 0 0 0

size 5

4

Implementing remove, cont.
• Again, we need to shift elements in the array

–  this time, it's a left-shift
–  in what order should we process the elements?
–  what indexes should we process?

–  list.remove(2); // delete 9 from index 2

index 0 1 2 3 4 5 6 7 8 9
value 3 8 9 7 5 12 0 0 0 0

size 6

index 0 1 2 3 4 5 6 7 8 9
value 3 8 7 5 12 12 0 0 0 0

size 5

3

5

remove

• remove code:

 public void remove(int index) {
 for (int i = index; i < size – 1; i++) {
 elementData[i] = elementData[i + 1];
 }
 size--;
 }

• We didn’t “reset” any value to 0. Why not?

Be careful with
loop boundaries!

6

remove

•  If we made an ArrayIntList and added the values 6, 43,
and 97, it would have the following state:

 0 1 2 3 4 98 99
 elementData: 6 43 97 0 0 ... 0 0
 size: 3

• After a call of remove(0) it has this state:
 0 1 2 3 4 98 99
 elementData: 43 97 97 0 0 ... 0 0
 size: 2

• We don’t care what values are in the invalid data

valid

valid

invalid

invalid

4

7

Is ArrayIntList Finished?
• What we’ve done so far:

–  Made an ArrayIntList class
–  Gave it enough variables to maintain its state
–  Gave it three methods: add, remove, and toString

• Sure we could add more methods...

• But what if our client is malicious?

 ArrayIntList list = new ArrayIntList();
 list.add(6);
 list.size = -1
 list.size = 9000;
 list.elementData = null;

This can really mess
up our ArrayIntList!

8

private

• private is a keyword in Java

• private is used just like public, but has the opposite effect

• When something is made private, it can be accessed only by
the class in which it is declared

• Some things that can be private:
–  methods
–  fields

5

9

ArrayIntList

• Now we’ll update ArrayIntList to use private fields:

 public class ArrayIntList {
 private int[] elementData = new int[100];
 private int size = 0;
 ...
 }

• Now the malicious code won’t work!
–  If the client tries to access elementData or size, he’ll get a

compiler error

10

A Problem!

• What if the client wants to know the current size of
ArrayIntList?

• This seems like a reasonable request...

• But we’ve completely blocked all access to size

• We don’t mind telling the client the current size, we just don’t
what them to change it

• How can we solve this problem?

6

11

Accessor Methods
• We can write a method that returns the current size:

 public int size() {
 return size;
 }

• Because size is an int, this returns a copy of size

• Our size method is an accessor method

• Accessor method: a method that returns information about
an object without modifying the object

12

get
• We should also provide a way for the client to read the values

in elementData

• This should also be an accessor method. We’ll call it get:

• get will return the value of elementData at a given index

• Code for get:

 public int get(int index) {
 return elementData[index];
 }

7

13

Preconditions
• What happens if someone passes an illegal index to get?

–  possible illegal indexes: -100, 9999

• Our code will break! This means get has a precondition

• Precondition: a condition that must be true before a method
is called. If it is not true, the method may not work properly

• So, a precondition for get is that the index be valid
–  The index must be greater than or equal to zero
–  And the index must be less than size

• At the very least, we should record this precondition in a
comment

14

Postconditions

• While we’re writing a comment for get, we should also say
what it action it performs

• Postcondition: a condition a method guarantees to be true
when it finishes executing, as long as the method’s
preconditions were met

• What is get’s postcondition?
–  it has returned the current value located at the given index

8

15

Pre/Post for get
• One way to record preconditions and postconditions is with a

pre/post style comment:

 // pre: 0 <= index < size()
 // post: returns the value at the given index
 public int get(int index) {
 return elementData[index];
 }

16

Constructors
• Whenever you use the keyword new, Java calls a special

method called the constructor

• Constructors have special syntax
–  they have the same name as the class
–  they do not have a return type

• Here’s how to write a simple constructor for ArrayIntList:
 public ArrayIntList() {
 // constructor code
 ...
 }

9

17

Default Constructor

• But didn’t we already use new on our ArrayIntList? How
does that work when we hadn’t yet written a constructor?

•  If a class does not have any constructors, Java provides a
default constructor

• The default constructor is often known as the zero-argument
constructor, because it takes no parameters/arguments

• However, as soon as you define a single constructor, Java no
longer provides the default constructor

18

ArrayIntList Constructor
• Here’s the updated code for ArrayIntList, now with a

constructor:
 public class ArrayIntList {
 private int[] elementData;
 private int size;

 public ArrayIntList() {
 elementData = new int[100];
 size = 0;
 }
 ...
 }
• Notice that I moved the initialization of the fields into the

constructor. This is considered better style in Java, and we will
look for it when grading.

10

19

Automatic/Implicit Initialization

• What happens if the fields are never initialized?

•  If you don’t initialize your fields, Java will automatically initialize
them to their zero-equivalents

• Some zero-equivalents, by type:
–  int: 0
–  double: 0.0
–  boolean: false
–  objects (like arrays or Strings): null

• This means we did not have to initialize size to 0 beforehand.

20

Multiple Constructors
• You can have more than one constructor

•  Just like when overloading other methods, all constructors for
the same class must have different parameters

• An ArrayIntList constructor that takes a capacity as a
parameter:

 public ArrayIntList(int capacity) {
 elementData = new int[capacity];
 size = 0;
 }

11

21

this

• Now we have the following two constructors:

• We can use the keyword this to fix our redundancy. Using
this with parameters will call the constructor in the same
class that requires those parameters.

• Updated constructor code:

public ArrayIntList() {
 elementData = new int[100];
 size = 0;
}

public ArrayIntList(int capacity) {
 elementData = new int[capacity];
 size = 0;
}

public ArrayIntList() {
 this(100);
}

public ArrayIntList(int capacity) {
 elementData = new int[capacity];
 size = 0;
}

22

Constants
• Our default value of 100 for capacity is arbitrary

• We should make it a class constant instead

• Code to declare a class constant:
 public static final int DEFAULT_CAPACITY = 100;

• Updated zero-argument constructor:
 public ArrayIntList() {
 this(DEFAULT_CAPACITY);
 }

12

23

Completed ArrayIntList
• Has two fields

–  elementData and size

• Has one constant
–  DEFAULT_CAPACITY

• Has two constructors
–  ArrayIntList() and ArrayIntList(int capacity)

• Has seven methods (some not covered in lecture)
–  size(), get(int index), toString(), indexOf(int value),
add(int value), add(int index, int value), and remove
(int index)

24

Quick Discussion: static

• static is hard to understand
–  Many of you will pass CSE 143 without understanding static

• When something is declared static, it is shared by all
instances of a class

• What would happen if we made size a static field?
–  All instances of ArrayIntList would use and update the same
size variable!

–  We do not want to do this...
–  But what would happen if we tried it?

13

25

Quick Discussion: static
• Making size a static field:
 private static int size;

• Consider the following code
 ArrayIntList list1 = new ArrayIntList();
 ArrayIntList list2 = new ArrayIntList();
 list1.add(6);
 list1.add(9);
 System.out.println("sizes: " + list1.size() + ", " + list2.size());
 System.out.println("toStrings: " + list1 + ", " + list2);

• What is printed?
 sizes: 2, 2
 toStrings: [6, 9], [0, 0]

Making size
static affects more
than just size()!

