
1

CSE 143
Lecture 5

References and Linked Nodes

slides created by Marty Stepp and Ethan Apter
http://www.cs.washington.edu/143/

2

Values vs. References
• Does the following swap method work? Why or why not?

 public static void main(String[] args) {
 int a = 7;
 int b = 35;

 // swap a with b
 swap(a, b);

 System.out.println(a + " " + b);
 }

 public static void swap(int a, int b) {
 int temp = a;
 a = b;
 b = temp;
 }

2

3

Value semantics

• value semantics: Behavior where values are copied when
assigned to each other or passed as parameters.

–  When one primitive is assigned to another, its value is copied.
–  Modifying the value of one variable does not affect others.

 int x = 5;
 int y = x; // x = 5, y = 5
 y = 17; // x = 5, y = 17
 x = 8; // x = 8, y = 17

4

Reference semantics
•  reference semantics: Behavior where variables actually store

the address of an object in memory.
–  When one reference variable is assigned to another, the object is

not copied; both variables refer to the same object.

 int[] a1 = {4, 5, 2, 12, 14, 14, 9};
 int[] a2 = a1; // refers to same array as a1
 a2[0] = 7;
 System.out.println(a1[0]); // 7

index 0 1 2 3 4 5 6

value 4 5 2 12 14 14 9

index 0 1 2 3 4 5 6

value 7 5 2 12 14 14 9

a1

a2

3

5

References and objects
•  In Java, objects and arrays use reference semantics. Why?

–  efficiency. Copying large objects slows down a program.
–  sharing. It's useful to share an object's data among methods.

 DrawingPanel panel1 = new DrawingPanel(80, 50);
 DrawingPanel panel2 = panel1; // same window
 panel2.setBackground(Color.CYAN);

panel1

panel2

6

Null references
• null : A value that does not refer to any object.

–  The elements of an array of objects are initialized to null.

 String[] words = new String[5];

–  not the same as the empty string "" or the string "null"

index 0 1 2 3 4

value null null null null null words

4

7

Null references
–  Uninitialized reference fields of an object are initialized to null.

 public class Student {
 String name;
 int id;
 }

 Student timmy = new Student();

name null

timmy id 0

8

Things you can do w/ null
•  store null in a variable or an array element

String s = null;
words[2] = null;

•  print a null reference
System.out.println(timmy.name); // null

•  ask whether a variable or array element is null
if (timmy.name == null) { ... // true

•  pass null as a parameter to a method
–  some methods don't like null parameters and throw exceptions

•  return null from a method (often to indicate failure)
return null;

5

9

Dereferencing
• dereference: To access data or methods of an object.

–  Done with the dot notation, such as s.length()
–  When you use a . after an object variable, Java goes to the

memory for that object and looks up the field/method requested.

 Student timmy = new Student();
 timmy.name = "Timmah";
 String s = timmy.name.toUpperCase();

name null
timmy

id 0

'T' 'i' 'm' 'm' 'a' 'h'

Student String

public int indexOf(String s) {...}
public int length() {...}
public String toUpperCase() {...}

10

Null pointer exception
•  It is illegal to dereference null (it causes an exception).

–  null does not refer to any object, so it has no methods or data.

 Student timmy = new Student();
 String s = timmy.name.toUpperCase(); // ERROR

 Output:
 Exception in thread "main"
 java.lang.NullPointerException
 at Example.main(Example.java:8)

name null
timmy

id 0

6

11

References to same type
• What would happen if we had a class that declared one of its

own type as a field?

public class Strange {
 private String name;
 private Strange other;
}

–  Will this compile?
• If so, what is the behavior of the other field? What can it do?
• If not, why not? What is the error and the reasoning behind it?

12

Array-Based List Review
• Array-based lists are what we’ve studied so far

–  ArrayIntList, ArrayList, SortedIntList all use arrays

• Arrays use a contiguous block of memory

• This means all elements are adjacent to each other

 0 1 2 3 4 5 6 7 8
 6 2 5 3 7 1 4 -9 -8

7

13

Advantages and Disadvantages

• Advantages of array-based lists

–  random access: can get any element in the entire array quickly
• kind of like jumping to any scene on a DVD (no fast-forwarding

required)

• Disadvantages of array-based lists

–  can’t insert/remove elements at the front/middle easily
• have to shift the other elements

–  can’t resize array easily
• have to create a new, bigger array

14

Linked Lists
• A linked list is a type of list

• But instead of a contiguous block of memory, like this:
 0 1 2 3 4
 5 6 7 8 9

•  Linked list elements are scattered throughout memory:

 8 9 7 5 6

• But now the elements are unordered. How do linked lists
keep track of everything?

8

15

Linked Lists
• Each element must have a reference to the next element:

 8 9 7 5 6

• Now, so long as we keep track of the first element (the front),
we can keep track of all the elements

front

back

16

Linked Lists
• These references to the next element mean that linked lists

have sequential access

• This means that to get to elements in the middle of the list,
we must first start at the front and follow all the links until
we get to the middle:
–  kind of like fast-forwarding on a VHS tape
–  so getting elements from the middle/back is slow

•  Linked lists also do some things well:
–  linked lists can insert elements quickly (no “shifting” needed)
–  linked lists can always add more elements (no set capacity)

• So there are tradeoffs between array lists and linked lists

9

17

Linked data structures
• All of the collections we will use and implement in this course

use one of the following two underlying data structures:

–  an array of all elements
• ArrayList, Stack, HashSet, HashMap

–  a set of linked objects, each storing one element,
and one or more reference(s) to other element(s)
• LinkedList, TreeSet, TreeMap

42 -3 17 9

front 42 -3 17 9 null

18

A list node class
public class ListNode {
 int data;
 ListNode next;
}

• Each list node object stores:
–  one piece of integer data
–  a reference to another list node (it does NOT contain another
ListNode object)

• ListNodes can be "linked" into chains to store a list of values:

data next

42

data next

-3

data next

17

data next

9 null

10

19

List node client example
public class ConstructList1 {
 public static void main(String[] args) {
 ListNode list = new ListNode();
 list.data = 42;
 list.next = new ListNode();
 list.next.data = -3;
 list.next.next = new ListNode();
 list.next.next.data = 17;
 list.next.next.next = null;
 System.out.println(list.data + " " + list.next.data
 + " " + list.next.next.data);
 // 42 -3 17
 }
}

data next

42

data next

-3

data next

17 null list

20

List node w/ constructor
public class ListNode {
 int data;
 ListNode next;

 public ListNode(int data) {
 this.data = data;
 this.next = null;
 }

 public ListNode(int data, ListNode next) {
 this.data = data;
 this.next = next;
 }
}

–  Exercise: Modify the previous client to use these constructors.

11

21

List node client example
• Two possible solutions:

ListNode list = new ListNode(42, new ListNode(-3, new ListNode
(17)));

ListNode list = new ListNode(17);
list = new ListNode(-3, list);
list = new ListNode(42, list);

–  NOTE: In the second solution, the nodes are added in reverse
order!

•  List creation is still somewhat tedious. More on that next time.

data next

42

data next

-3

data next

17 null list

22

Linked node problem 1
• What set of statements turns this picture:

•  Into this?

 list.next.next = new ListNode(30);

data next

10

data next

20
list

data next

10

data next

20
list data next

30

12

23

Linked node problem 2
• What set of statements turns this picture:

•  Into this?

 list = new ListNode(30, list);

data next

10

data next

20
list

data next

30

data next

10
list data next

20

24

Linked node problem 3
• What set of statements turns this picture:

•  Into this?

data next

10

data next

20
list1

data next

30

data next

40
list2

data next

10

data next

30
list1

data next

40
list2

data next

20

13

25

Linked node problem 3
• Two possible solutions:
 ListNode temp = list1.next;
 list1.next = list2;

 list2 = list2.next;
 list1.next.next = temp;

 ListNode temp = list2.next;

 list2.next = list1.next;
 list1.next = list2;

 list2 = temp;

26

Final Thoughts

• Working with linked lists can be hard

• Draw lots of pictures!

•  jGRASP’s debugger can also be helpful
–  but remember: you won’t have jGRASP on the exams
–  and linked lists are definitely on the exams

• Sometimes, solving one of these problems requires a
temporary variable:

 ListNode temp = p;

This creates a ListNode
variable. It does not
create a new ListNode
object (no call on new).

