
1

CSE 143
Lecture 7

More Linked Lists

slides created by Marty Stepp
http://www.cs.washington.edu/143/

2

Conceptual questions
• What is the difference between a LinkedIntList and a
ListNode?

• What is the difference between an empty list and a null list?
–  How do you create each one?

• Why are the fields of ListNode public? Is this bad style?

• What effect does this code have on a LinkedIntList?

 ListNode current = front;
 current = null;

2

3

Conceptual answers
• A list consists of 0 to many node objects.

–  Each node holds a single data element value.

• null list: LinkedIntList list = null;
empty list: LinkedIntList list = new LinkedIntList();

•  It's okay that the node fields are public, because client code
never directly interacts with ListNode objects.

• The code doesn't change the list.
You can change a list only in one of the following two ways:
–  Modify its front field value.
–  Modify the next reference of a node in the list.

4

IMPORTANT
• There are only two ways to change the structure of a

linked list:

1)  change the value of front

–  this changes the starting point of the list
–  example: front = null;

2)  change the value of <something>.next, where
<something> is a temporary variable that refers to a
node in the list

–  this changes a link in the list
–  example: current.next = null;

3

5

Implementing remove
// Removes and returns the list's first value.
public int remove() {
 ...
}

–  How do we remove the front node from a list?
–  Does it matter what the list's contents are before the remove?

6

Removing front element
• Before removing front element:

• After first removal: After second removal:

front =

data next

20

front =

data next

42

data next

20

element 0 element 1

element 0

front =

4

7

remove solution
// Removes and returns the first value.
// Throws a NoSuchElementException on empty list.
public int remove() {
 if (front == null) {
 throw new NoSuchElementException();
 } else {
 int result = front.data;
 front = front.next;
 return result;
 }
}

8

Implementing remove (2)
// Removes value at given index from list.
// Precondition: 0 <= index < size
public void remove(int index) {
 ...
}

–  How do we remove any node in general from a list?
–  Does it matter what the list's contents are before the remove?

5

9

Removing from a list
• Before removing element at index 1:

• After:

front =

data next
42

data next

20

front =

data next

42

data next

-3
data next

20

element 0 element 1 element 2

element 0 element 1

10

Removing from the front
• Before removing element at index 0:

• After:

front =

data next

-3

data next

20

front =

data next

42
data next

-3
data next

20

element 0 element 1 element 2

element 0 element 1

6

11

Removing the only element
• Before: After:

–  We must change the front field to store null instead of a node.
–  Do we need a special case to handle this?

front = front =

data next

20

element 0

12

remove (2) solution
// Removes value at given index from list.
// Precondition: 0 <= index < size()
public void remove(int index) {
 if (index == 0) {
 // special case: removing first element
 front = front.next;
 } else {
 // removing from elsewhere in the list
 ListNode current = front;
 for (int i = 0; i < index - 1; i++) {
 current = current.next;
 }
 current.next = current.next.next;
 }
}

7

13

Exercise
• Write a method addSorted that accepts an integer value as a

parameter and adds that value to a sorted list in sorted order.

–  Before addSorted(17) :

–  After addSorted(17) :

front =
data next

-4

data next

8
data next

22

element 0 element 1 element 2

front =
data next

-4

data next

17
data next

22

element 0 element 2 element 3

data next

8

element 1

14

The common case
• Adding to the middle of a list:

 addSorted(17)

–  Which references must be changed?
–  What sort of loop do we need?
–  When should the loop stop?

front =
data next

-4

data next

8
data next

22

element 0 element 1 element 2

8

15

First attempt
• An incorrect loop:

ListNode current = front;
while (current.data < value) {
 current = current.next;
}

• What is wrong with this code?
–  The loop stops too late to affect the list in the right way.

front =
data next

-4

data next

8
data next

22

element 0 element 1 element 2

current

16

Key idea: peeking ahead
• Corrected version of the loop:

ListNode current = front;
while (current.next.data < value) {
 current = current.next;
}

–  This time the loop stops in the right place.

front =
data next

-4

data next

8
data next

22

element 0 element 1 element 2

current

9

17

Another case to handle
• Adding to the end of a list:

 addSorted(42)

Exception in thread "main": java.lang.NullPointerException

–  Why does our code crash?
–  What can we change to fix this case?

front =
data next

-4

data next

8
data next

22

element 0 element 1 element 2

18

Multiple loop tests
• A correction to our loop:

ListNode current = front;
while (current.next != null &&
 current.next.data < value) {
 current = current.next;
}

–  We must check for a next of null before we check its .data.

front =
data next

-4

data next

8
data next

22

element 0 element 1 element 2

current

10

19

Third case to handle
• Adding to the front of a list:

 addSorted(-10)

–  What will our code do in this case?
–  What can we change to fix it?

front =
data next

-4

data next

8
data next

22

element 0 element 1 element 2

20

Handling the front
• Another correction to our code:

if (value <= front.data) {
 // insert at front of list
 front = new ListNode(value, front);
} else {
 // insert in middle of list
 ListNode current = front;
 while (current.next != null &&
 current.next.data < value) {
 current = current.next;
 }
 current.next = new ListNode(value, current.next);
}

–  Does our code now handle every possible case?

11

21

Fourth case to handle
• Adding to (the front of) an empty list:

 addSorted(42)

–  What will our code do in this case?
–  What can we change to fix it?

front =

22

Final version of code
// Adds given value to list in sorted order.
// Precondition: Existing elements are sorted
public void addSorted(int value) {
 if (front == null || value <= front.data) {
 // insert at front of list
 front = new ListNode(value, front);
 } else {
 // insert in middle of list
 ListNode current = front;
 while (current.next != null &&
 current.next.data < value) {
 current = current.next;
 }
 current.next = new ListNode(value, current.next);
 }
}

12

23

Exercise
•  Write a method reverse that reverses the order of the

elements in the list.

 For example, if the list initially stores this sequence of integers:

 [1, 8, 19, 4, 17]

 It should store the following sequence of integers after reverse
is called:

 [17, 4, 19, 8, 1]

24

Solution
public void reverse() {

 ListNode current = front;

 ListNode previous = null;

 while (current != null) {
 ListNode nextNode = current.next;

 current.next = previous;

 previous = current;

 current = nextNode;

 }
 front = previous;

}

