
1

CSE 143
Lecture 9

Interfaces; Stacks and Queues

slides created by Marty Stepp
http://www.cs.washington.edu/143/

2

Related classes
•  Consider the task of writing classes to represent shapes such

as Circle, Rectangle, and Triangle.

•  Certain operations are common to all shapes:
–  perimeter
–  area

2

3

Shape area and perimeter
• Circle:

 area = π r 2
 perimeter = 2 π r

• Rectangle:
 area = w h
 perimeter = 2w + 2h

• Triangle:
 area = √(s (s - a) (s - b) (s - c))
 where s = ½ (a + b + c)
 perimeter = a + b + c

r

w

h

a
b

c

4

Printing shape information
• We'd like our client code to be able to print the area and

perimeter of our shapes.
–  Of course, we would use methods...

 public static void printCircleInfo(Circle c) {
 System.out.println("area = " + c.area());
 System.out.println("perimeter = " + c.perimeter());
}

public static void printTriangleInfo(Triangle t) {
 System.out.println("area = " + t.area());
 System.out.println("perimeter = " + t.perimeter());
}

public static void printRectangleInfo(Rectangle r) {
 System.out.println("area = " + r.area());
 System.out.println("perimeter = " + r.perimeter());
}

•  Redundancy—ewwwwwww!!!! What can we do about this?

3

5

Printing shape information
• What about having shapes inherit from a superclass Shape

that has the area and perimeter methods so we can have
polymorphic methods?

 public class Rectangle extends Shape { ... }
public class Triangle extends Shape { ... }
public class Circle extends Shape { ... }

public static void printShapeInfo(Shape s) {
 System.out.println("area = " + s.area());
 System.out.println("perimeter = " + s.perimeter());
}

• What is wrong with this solution?
-  What does the Shape class look like?

6

Inheritance doesn’t apply
 public class Shape {
 public double area() {
 // what goes here?
 }

 public double perimeter() {
 // what goes here?
 }
}

• This doesn’t work—different shapes compute the area and
perimeter differently!

4

7

Interfaces (9.5)
•  interface: A list of methods that a class can promise to implement.

–  Inheritance gives you an is-a relationship and code sharing.
• A Lawyer can be treated as an Employee and inherits its code.

–  Interfaces give you an is-a relationship without code sharing.
• A Rectangle object can be treated as a Shape but inherits no code.

–  Analogous to non-programming idea of roles or certifications:
• "I'm certified as a CPA accountant.

This assures you I know how to do taxes, audits, and consulting."
• "I'm 'certified' as a Shape, because I implement the Shape interface.

This assures you I know how to compute my area and perimeter."

8

Interface syntax
public interface name {
 public type name(type name, ..., type name);
 public type name(type name, ..., type name);
 ...
 public type name(type name, ..., type name);
}

Example:
public interface Vehicle {
 public int getSpeed();
 public void setDirection(int direction);
}

5

9

Shape interface
 // Describes features common to all shapes.
 public interface Shape {
 public double area();
 public double perimeter();
 }

–  Saved as Shape.java

• abstract method: A header without an implementation.
–  The actual bodies are not specified, because we want to allow

each class to implement the behavior in its own way.

10

Implementing an interface
 public class name implements interface {
 ...
 }

• A class can declare that it "implements" an interface.
–  The class promises to contain each method in that interface.

(Otherwise it will fail to compile.)

–  Example:
 public class Bicycle implements Vehicle {
 ...
 }

6

11

Interface requirements
 public class Banana implements Shape {
 // no methods!
 }

•  If we write a class that claims to be a Shape but doesn't
implement area and perimeter methods, it will not compile.

 Banana.java:1: Banana is not abstract and does
not override abstract method area() in Shape

 public class Banana implements Shape {
 ^

12

Polymorphism
•  Interfaces benefit the client code author the most.

–  they allow polymorphism
(the same code can work with different types of objects)

 public static void printInfo(Shape s) {
 System.out.println("area: " + s.area());
 System.out.println("perimeter: " + s.perimeter());
 }
 ...
 Circle circ = new Circle(12.0);
 Triangle tri = new Triangle(5, 12, 13);
 printInfo(circ);
 printInfo(tri);

7

13

Linked vs. array lists
• We have implemented two collection classes:

–  ArrayIntList

–  LinkedIntList

–  They have similar behavior, implemented in different ways.
We should be able to treat them the same way in client code.

index 0 1 2 3

value 42 -3 17 9

front

data next

42

data next

-3
data next

17

data next

9

14

An IntList interface
// Represents a list of integers.
public interface IntList {
 public void add(int value);
 public void add(int index, int value);
 public int get(int index);
 public int indexOf(int value);
 public boolean isEmpty();
 public void remove(int index);
 public void set(int index, int value);
 public int size();
}

public class ArrayIntList implements IntList { ...
public class LinkedIntList implements IntList { ...

8

15

Redundant client code
public class ListClient {
 public static void main(String[] args) {
 ArrayIntList list1 = new ArrayIntList();
 list1.add(18);
 list1.add(27);
 list1.add(93);
 System.out.println(list1);
 list1.remove(1);
 System.out.println(list1);
 LinkedIntList list2 = new LinkedIntList();
 list2.add(18);
 list2.add(27);
 list2.add(93);
 System.out.println(list2);
 list2.remove(1);
 System.out.println(list2);
 }
}

16

Client code w/ interface
public class ListClient {
 public static void main(String[] args) {
 IntList list1 = new ArrayIntList();
 process(list1);
 IntList list2 = new LinkedIntList();
 process(list2);
 }

 public static void process(IntList list) {
 list.add(18);
 list.add(27);
 list.add(93);
 System.out.println(list);
 list.remove(1);
 System.out.println(list);
 }
}

9

17

ADTs as interfaces (11.1)
• abstract data type (ADT): A specification of a collection of

data and the operations that can be performed on it.
–  Describes what a collection does, not how it does it.

•  Java's collection framework uses interfaces to describe ADTs:
–  Collection, Deque, List, Map, Queue, Set

• An ADT can be implemented in multiple ways by classes:
–  ArrayList and LinkedList implement List
–  HashSet and TreeSet implement Set
–  LinkedList , ArrayDeque, etc. implement Queue

18

Using ADT interfaces
When using Java's built-in collection classes:

•  It is considered good practice to always declare collection
variables using the corresponding ADT interface type:

 List<String> list = new ArrayList<String>();

• Methods that accept a collection as a parameter should also
declare the parameter using the ADT interface type so they can
be used as widely as possible:

public void stutter(List<String> list) {
 ...

}

10

19

Why use ADTs?
• Why would we want more than one kind of list, queue, etc.?

• Answer: Each implementation is more efficient at certain tasks.
–  ArrayList is faster for adding/removing at the end;
LinkedList is faster for adding/removing at the front/middle.

–  HashSet can search a huge data set for a value in short time;
TreeSet is slower but keeps the set of data in a sorted order.

–  You choose the optimal implementation for your task, and if the
rest of your code is written to use the ADT interfaces, it will work
with minimal changes (only when the object is created).

20

Stacks and queues
• Sometimes it is good to have a collection that is less powerful,

but is optimized to perform certain operations very quickly.

• We will examine two specialty collections:
–  stack: Retrieves elements in the reverse of the order they were added.
–  queue: Retrieves elements in the same order they were added.

stack

queue

11

21

Stacks
•  stack: A collection based on the principle of adding elements

and retrieving them in the opposite order.
–  Last-In, First-Out ("LIFO")
–  The elements are stored in order of insertion,

but we do not think of them as having indexes.

•  basic stack operations:
–  push: Add an element to the top
–  pop: Remove and return the top element

22

Stacks in computer science
•  Programming languages:

–  method calls are placed onto a stack
 (call=push, return=pop)

• Matching up related pairs of things:
–  find out whether a string is a palindrome
–  examine a file to see if its braces { } and other operators match

• Sophisticated algorithms:
–  searching through a maze with "backtracking"
–  many programs use an "undo stack" of previous operations

(EditUndo)

method3
return var
local vars
parameters

method2
return var
local vars
parameters

method1
return var
local vars
parameters

12

23

Interface Stack

Stack<Integer> s = new ArrayStack<Integer>();
s.push(42);
s.push(-3);
s.push(17); // bottom [42, -3, 17] top

System.out.println(s.pop()); // 17

•  NOTE: This Stack interface differs from the Stack class in java.util.
We are using a custom interface, because Java messed up and did not
include an interface for stacks. ArrayStack is a custom class (available
from course web page).

push(value) places given value on top of stack
pop() removes top value from stack and returns it
size() returns number of elements in stack
isEmpty() returns true if stack has no elements

24

Stack limitations/idioms
• Remember: You cannot loop over a stack in the usual way.

 Stack<Integer> s = new ArrayStack<Integer>();
 ...
 for (int i = 0; i < s.size(); i++) {
 do something with s.get(i);
 }

•  Instead, you must pull contents out of the stack to view them.
–  common idiom: Removing each element until the stack is empty.

 while (!s.isEmpty()) {
 do something with s.pop();
 }

13

25

Exercise
• Consider an input file of exam scores in reverse ABC order:

 Ziggy 87
 Wendy 84
 Tom 52
 Jerry 95
 ...

• Write code to print the exam scores in ABC order using a stack.

26

Solution
import java.io.*;

import java.util.*;

public class StackExercise {
 public static void main(String[] args) throws FileNotFoundException {
 Scanner input = new Scanner(new File("scores.txt"));
 Stack<String> s = new ArrayStack<String>();

 while (input.hasNextLine()) {
 s.push(input.nextLine());
 }

 while (!s.isEmpty()) {
 System.out.println(s.pop());
 }
 }

}

•  What if we wanted to do more processing on the exam scores?

14

27

What happened to my stack?

• Suppose we're asked to write a method max that accepts a
Stack of integers and returns the largest integer in the stack.
–  The following solution is seemingly correct:

// Precondition: s.size() > 0
public static int max(Stack<Integer> s) {
 int maxValue = s.pop();

 while (!s.isEmpty()) {
 int next = s.pop();
 maxValue = Math.max(maxValue, next);
 }
 return maxValue;
}

–  The algorithm is correct, but what is wrong with the code?

28

What happened to my stack?

• The code destroys the stack in figuring out its answer!
–  To fix this, you must save and restore the stack's contents:

public static int max(Stack<Integer> s) {
 Stack<Integer> backup = new ArrayStack<Integer>();
 int maxValue = s.pop();
 backup.push(maxValue);

 while (!s.isEmpty()) {
 int next = s.pop();
 backup.push(next);
 maxValue = Math.max(maxValue, next);
 }

 while (!backup.isEmpty()) {
 s.push(backup.pop());
 }
 return maxValue;
}

15

29

Queues
• queue: Retrieves elements in the order they were added.

–  First-In, First-Out ("FIFO")
–  Elements are stored in order of

insertion but don't have indexes.
–  Client can only add to the end of the

queue, and can only examine/remove
the front of the queue.

•  basic queue operations:
–  enqueue (add): Add an element to the back
–  dequeue (remove): Remove the front element

30

Queues in computer science
• Operating systems:

–  queue of print jobs to send to the printer
–  queue of programs / processes to be run
–  queue of network data packets to send

•  Programming:
–  modeling a line of customers or clients
–  storing a queue of computations to be performed in order

• Real world examples:
–  people on an escalator or waiting in a line
–  cars at a gas station (or on an assembly line)
–  remembering which Goomba is supposed to attack Mario next

16

31

Programming with Queues

Queue<Integer> q = new LinkedQueue<Integer>();
q.enqueue(42);
q.enqueue(-3);
q.enqueue(17); // front [42, -3, 17] back]
System.out.println(q.dequeue()); // 42

•  NOTE: We will also be using a custom Queue interface (which is a simplified
version of Java’s Queue interface).

enqueue(value) places given value at back of queue
dequeue() removes value from front of queue and returns it;

throws a IllegalStateException if queue is
empty

size() returns number of elements in queue
isEmpty() returns true if queue has no elements

32

Queue Mystery
•  Let’s try printing the contents of a queue:
 public class QueueMystery {
 public static void main(String[] args) {
 Queue<Integer> q = new LinkedQueue<Integer>();
 for (int i = 0; i < 10; i++) {
 q.enqueue(i);
 }

 for (int i = 0; i < q.size(); i++) {
 System.out.println(i + ": " + q.dequeue());
 }
 }
}

• What is the output?

17

33

Queue idioms
• As with stacks, must pull contents out of queue to view them.

 while (!q.isEmpty()) {
 do something with q.dequeue();
 }

–  another idiom: Examining each element exactly once.

 int size = q.size();
 for (int i = 0; i < size; i++) {
 do something with q.dequeue();
 (including possibly re-adding it to the queue)
 }

34

Mixing stacks and queues
• We often mix stacks and queues to achieve certain effects.

–  Example: Reverse the order of the elements of a queue.

 Queue<Integer> q = new LinkedQueue<Integer>();
 q.enqueue(1);
 q.enqueue(2);
 q.enqueue(3) // [1, 2, 3]

 Stack<Integer> s = new ArrayStack<Integer>();

 while (!q.isEmpty()) { // Q -> S
 s.push(q.dequeue());
 }

 while (!s.isEmpty()) { // S -> Q
 q.enqueue(s.pop());
 }

 System.out.println(q); // [3, 2, 1]

18

35

Exercises
• Write a method stutter that accepts a queue of integers as a

parameter and replaces every element of the queue with two
copies of that element.

–  front [1, 2, 3] back
becomes
front [1, 1, 2, 2, 3, 3] back

• Write a method mirror that accepts a queue of strings as a
parameter and appends the queue's contents to itself in
reverse order.

–  front [a, b, c] back
becomes
front [a, b, c, c, b, a] back

36

Solutions
 public static void stutter(Queue<Integer> q) {
 int size = q.size();
 for (int i = 0; i < size; i++) {
 int value = q.dequeue();
 q.enqueue(value);
 q.enqueue(value);
 }
}

 public static void mirror(Queue<String> q) {
 Stack<String> s = new ArrayStack<String>();

 int size = q.size();
 for (int i = 0; i < size; i++) {
 String value = q.dequeue();
 q.enqueue(value);
 s.push(value);
 }

 while (!s.isEmpty()) {
 q.enqueue(s.pop());
 }
}

