
1

CSE 143
Lecture 10

Recursion

slides created by Marty Stepp and Alyssa Harding
http://www.cs.washington.edu/143/

2

Recursion

•  Iteration: a programming technique in which you describe
actions to be repeated using a loop

• Recursion: a programming technique in which you describe
actions to be repeated using a method that calls itself

• Both approaches can be used to solve the same problems
–  Some problems are easier solved iteratively
–  Some problems are easier solved recursively
–  Sometimes the recursive solution is a LOT simpler than the

iterative solution!

2

3

Exercise
• How many students total are directly behind you in your

"column" of the classroom?

–  You have poor vision, so you can
see only the people right next to you.
So you can't just look back and count.

–  But you are allowed to ask
questions of the person next to you.

–  How can we solve this problem?
(recursively)

4

The idea
• Recursion is all about breaking a big problem into smaller

occurrences of that same problem.

–  Each person can solve a small part of the problem.
• What is a small version of the problem that would be easy to answer?
• What information from a neighbor might help me?

3

5

Recursive algorithm
• Number of people behind me:

–  If there is someone behind me,
ask him/her how many people are behind him/her.
• When they respond with a value N, then I will answer N + 1.

–  If there is nobody behind me, I will answer 0.

6

Recursion and cases
• Every recursive algorithm involves at least 2 cases:

–  base case: A simple occurrence that can be answered directly.

–  recursive case: A more complex occurrence of the problem that
cannot be directly answered, but can instead be described in
terms of smaller occurrences of the same problem.

–  Some recursive algorithms have more than one base or recursive
case, but all have at least one of each.

–  A crucial part of recursive programming is identifying these cases.

4

7

Example: stairs

• You want to walk down a flight of stairs.

•  Iterative approach:

 “Let me count the number of stairs there are,
 and then take that that many steps!”

1

3
2

8

Example: stairs

• You want to walk down a flight of stairs.

• Recursive approach:

 “If I’m at the bottom, I stop.
 Otherwise, I take a step down and repeat.”

step and repeat…
step and repeat…

step and repeat…

stop!

5

9

Recursion in Java
• Consider the following method to print a line of * characters:

// Prints a line containing the given number of stars.
// Precondition: n >= 0
public static void printStars(int n) {
 for (int i = 0; i < n; i++) {
 System.out.print("*");
 }
 System.out.println(); // end the line of output
}

• Write a recursive version of this method (that calls itself).
–  Solve the problem without using any loops.
–  Hint: Your solution should print just one star at a time.

10

A basic case
• What are the cases to consider?

–  What is a very easy number of stars to print without a loop?

public static void printStars(int n) {
 if (n == 1) {
 // base case; just print one star
 System.out.println("*");
 } else {
 ...
 }
}

6

11

Handling more cases
• Handling additional cases, with no loops (in a bad way):

public static void printStars(int n) {
 if (n == 1) {
 // base case; just print one star
 System.out.println("*");
 } else if (n == 2) {
 System.out.print("*");
 System.out.println("*");
 } else if (n == 3) {
 System.out.print("*");
 System.out.print("*");
 System.out.println("*");
 } else if (n == 4) {
 System.out.print("*");
 System.out.print("*");
 System.out.print("*");
 System.out.println("*");
 } else ...
}

12

Handling more cases 2
• Taking advantage of the repeated pattern (somewhat better):

public static void printStars(int n) {
 if (n == 1) {
 // base case; just print one star
 System.out.println("*");
 } else if (n == 2) {
 System.out.print("*");
 printStars(1); // prints "*"
 } else if (n == 3) {
 System.out.print("*");
 printStars(2); // prints "**"
 } else if (n == 4) {
 System.out.print("*");
 printStars(3); // prints "***"
 } else ...
}

7

13

Using recursion properly
• Condensing the recursive cases into a single case:

public static void printStars(int n) {
 if (n == 1) {
 // base case; just print one star
 System.out.println("*");
 } else {
 // recursive case; print one more star
 System.out.print("*");
 printStars(n - 1);
 }
}

14

"Recursion Zen"
• The real, even simpler, base case is an n of 0, not 1:

public static void printStars(int n) {
 if (n == 0) {
 // base case; just end the line of output
 System.out.println();
 } else {
 // recursive case; print one more star
 System.out.print("*");
 printStars(n - 1);
 }
}

–  Recursion Zen: The art of properly identifying the best set of
cases for a recursive algorithm and expressing them elegantly.

(A CSE 143 informal term)

8

15

Recursive tracing
• Consider the following recursive method:

public static int mystery(int n) {
 if (n < 10) {
 return n;
 } else {
 int a = n / 10;
 int b = n % 10;
 return mystery(a + b);
 }
}

–  What is the result of the following call?
mystery(648)

16

A recursive trace
mystery(648):

  int a = 648 / 10; // 64
  int b = 648 % 10; // 8
  return mystery(a + b); // mystery(72)

mystery(72):

 int a = 72 / 10; // 7
 int b = 72 % 10; // 2
 return mystery(a + b); // mystery(9)

mystery(9):

 return 9;

9

17

Recursive tracing 2
• Consider the following recursive method:

public static int mystery(int n) {
 if (n < 10) {
 return (10 * n) + n;
 } else {
 int a = mystery(n / 10);
 int b = mystery(n % 10);
 return (100 * a) + b;
 }
}

–  What is the result of the following call?
mystery(348)

18

A recursive trace 2
mystery(348)

  int a = mystery(34);
• int a = mystery(3);

return (10 * 3) + 3; // 33

• int b = mystery(4);
return (10 * 4) + 4; // 44

• return (100 * 33) + 44; // 3344

  int b = mystery(8);
return (10 * 8) + 8; // 88

–  return (100 * 3344) + 88; // 334488

–  What is this method really doing?

10

19

Example: reverse

• Now we’ll look at a problem that’s hard to solve iteratively, but
easier with recursion

• Given a Scanner as input, print the lines in reverse

• How would you solve this iteratively?
–  Loop while there are more lines
–  Requires additional storage, like a List or a Stack

20

Example: reverse

• Writing reverse recursively:

• What is the base case?
 public static void reverse(Scanner input) {
 // base case: no more lines
 if (!input.hasNextLine()) {
 // do nothing
 } else {
 …
 }
 }

This is a good base case,
but we don’t need to

do anything in this case

11

21

Example: reverse

• Writing reverse recursively:

• What is the base case?
 public static void reverse(Scanner input) {
 // base case: no more lines
 // recursive case
 if (input.hasNextLine()) {
 …
 }
 }

It’s better style not to have
 an empty if statement.

22

Example: reverse

• Writing reverse recursively:

• What is the recursive case’s work?
 public static void reverse(Scanner input) {
 // base case: no more lines
 // recursive case
 if (input.hasNextLine()) {
 String line = input.nextLine();
 // reverse the rest of the input
 System.out.println(line);
 }
 }

We made a little progress, how do we do the rest?

12

23

Example: reverse

• Writing reverse recursively:

• What is the recursive case’s work?
 public static void reverse(Scanner input) {
 // base case: no more lines
 // recursive case
 if (input.hasNextLine()) {
 String line = input.nextLine();
 reverse(input);
 System.out.println(line);
 }
 }

We recursively call the method with the easier problem!

24

public static void main (String[] args) {
 Scanner input =
 new Scanner(new File("recursion.txt"));
reverse(input);

}

public static void reverse(Scanner input) {
 if (input.hasNextLine()) {
 String line = input.nextLine(); // student
 reverse(input);
 System.out.println(line);
 }
}

Example: reverse

Output:
recursion
loves
that
student

public static void reverse(Scanner input) {
 if (input.hasNextLine()) {
 String line = input.nextLine(); // that
 reverse(input);
 System.out.println(line);
 }
}

public static void reverse(Scanner input) {
 if (input.hasNextLine()) {
 String line = input.nextLine(); // loves
 reverse(input);
 System.out.println(line);
 }
}

Input:
student
that
loves
recursion

public static void reverse(Scanner input) {
 if (input.hasNextLine()) {
 String line = input.nextLine(); // recursion
 reverse(input);
 System.out.println(line);
 }
}

public static void reverse(Scanner input) {
 if (input.hasNextLine()) { // false!
 String line = input.nextLine();
 reverse(input);
 System.out.println(line);
 }
}

