
1

CSE 143
Lecture 14

Sorting

slides created by Marty Stepp and Ethan Apter
http://www.cs.washington.edu/143/

2

Sorting
•  sorting: Rearranging the values in an array or collection into a

specific order (usually into their "natural ordering").

–  one of the fundamental problems in computer science
•  bogo sort
•  bubble sort
•  selection sort
•  insertion sort
• merge sort
•  heap sort
•  quick sort
•  bucket sort
•  radix sort
•  ...

• How would you sort a million integers?

2

3

Sorting methods in Java
• The Arrays and Collections classes in java.util have a

static method sort that sorts the elements of an array/list

String[] words = {"foo", "bar", "baz", "ball"};
Arrays.sort(words);
System.out.println(Arrays.toString(words));
// [ball, bar, baz, foo]

List<String> words2 = new ArrayList<String>();
for (String word : words) {
 words2.add(word);
}
Collections.sort(words2);
System.out.println(words2);
// [ball, bar, baz, foo]

4

Collections class

Method name Description
binarySearch(list, value) returns the index of the given value in

a sorted list (< 0 if not found)

copy(listTo, listFrom) copies listFrom's elements to listTo
emptyList(), emptyMap(),
emptySet()

returns a read-only collection of the
given type that has no elements

fill(list, value) sets every element in the list to have
the given value

max(collection), min
(collection)

returns largest/smallest element

replaceAll(list, old, new) replaces an element value with another

reverse(list) reverses the order of a list's elements

shuffle(list) arranges elements into a random order

sort(list) arranges elements into ascending order

3

5

Bogo sort
• bogo sort: Orders a list of values by repetitively shuffling

them and checking if they are sorted.
–  name comes from the word "bogus"

The algorithm:
–  Scan the list, seeing if it is sorted. If so, stop.
–  Else, shuffle the values in the list and repeat.

6

Bogo sort code
// Places the elements of a into sorted order.
public static void bogoSort(int[] a) {
 while (!isSorted(a)) {
 shuffle(a);
 }
}

// Returns true if a's elements are in sorted order.
private static boolean isSorted(int[] a) {
 for (int i = 0; i < a.length - 1; i++) {
 if (a[i] > a[i + 1]) {
 return false;
 }
 }
 return true;
}

4

7

Bogo sort code, cont'd.
// Shuffles an array of ints by randomly swapping each
// element with an element ahead of it in the array.
private static void shuffle(int[] a) {
 for (int i = 0; i < a.length - 1; i++) {
 // pick a random index in [i+1, a.length-1]
 int range = a.length - 1 - (i + 1) + 1;
 int j = (int) (Math.random() * range + (i + 1));
 swap(a, i, j);
 }
}

// Swaps a[i] with a[j].
private static void swap(int[] a, int i, int j) {
 int temp = a[i];
 a[i] = a[j];
 a[j] = temp;
}

8

Selection sort
•  selection sort: Orders a list of values by repeatedly putting

the smallest unplaced value into its final position.

The algorithm:
–  Look through the list to find the smallest value.
–  Swap it so that it is at index 0.

–  Look through the list to find the second-smallest value.
–  Swap it so that it is at index 1.

 ...

–  Repeat until all values are in their proper places.

5

9

Selection sort example
•  Initial array:

• After 1st, 2nd, and 3rd passes:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value 22 18 12 -4 27 30 36 50 7 68 91 56 2 85 42 98 25

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 18 12 22 27 30 36 50 7 68 91 56 2 85 42 98 25

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 12 22 27 30 36 50 7 68 91 56 18 85 42 98 25

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 22 27 30 36 50 12 68 91 56 18 85 42 98 25

10

Selection sort code
// Rearranges the elements of a into sorted order using
// the selection sort algorithm.
public static void selectionSort(int[] a) {
 for (int i = 0; i < a.length - 1; i++) {
 // find index of smallest remaining value
 int min = i;
 for (int j = i + 1; j < a.length; j++) {
 if (a[j] < a[min]) {
 min = j;
 }
 }

 // swap smallest value its proper place, a[i]
 swap(a, i, min);
 }
}

6

11

Selection sort runtime (Fig. 13.6)

• What is the complexity class (Big-Oh) of selection sort?

12

Similar algorithms

• bubble sort: Make repeated passes, swapping adjacent values
–  slower than selection sort (has to do more swaps)

•  insertion sort: Shift each element into a sorted sub-array
–  faster than selection sort (examines fewer values)

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value 22 18 12 -4 27 30 36 50 7 68 91 56 2 85 42 98 25

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value 18 12 -4 22 27 30 36 7 50 68 56 2 85 42 91 25 98

22 50 91 98

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 12 18 22 27 30 36 50 7 68 91 56 2 85 42 98 25

7

sorted sub-array (indexes 0-7)

7

13

Merge sort
• merge sort: Repeatedly divides the data in half, sorts each

half, and combines the sorted halves into a sorted whole.

The algorithm:
–  Divide the list into two roughly equal halves.
–  Sort the left half.
–  Sort the right half.
–  Merge the two sorted halves into one sorted list.

14

Merge sort example
index 0 1 2 3 4 5 6 7

value 22 18 12 -4 58 7 31 42

22 18 12 -4

22 18

22 18

18 22
merge

split
12 -4

12 -4

-4 12
merge

split

split

-4 12 18 22

58 7 31 42

58 7

58 7

7 58
merge

split
31 42

31 42

31 42
merge

split

split

7 31 42 58

-4 7 12 18 22 31 42 58

split

merge merge

merge

8

15

Merge halves code
• Merge sort:

–  divide a list into two halves
–  sort the halves
–  recombine the sorted halves into a sorted whole

 // Merges the left/right elements into a sorted result.
 // Precondition: left/right are sorted
 private static void merge(int[] result, int[] left,

 int[] right) {

 ...

 }

We’re going
to write this

part first

16

Merge halves code
• So how do we actually merge the two sorted lists into one

sorted result list?

• One (wrong) way would just be to blindly copy the values
from the two sorted lists into the result list and then sort
the result list
–  this doesn’t take advantage of the fact that the two lists are

already sorted

•  Instead, we’ll repeatedly select the smallest value from
both sorted lists and put this value into the result list
–  because the two sorted lists are sorted, we know that their

smallest values are found at the front

9

17

Merge halves code
• So to compare the smallest values, we’ll do something like this
 if (left[0] <= right[0])

 result[0] = left[0];
 else

 result[0] = right[0];

• Obviously, this only handles the very first value

• We need to use a loop and update our indexes in order to get
this working correctly

• But how many indexes do we need?

18

Merge halves code
• We have three arrays, so we need three indexes

–  we need an index for left, which tells us how many values
from left we’ve copied so far

–  we need an index for right, which tells us how many values
from right we’ve copied so far

–  we need an index for result, which tells us how many values
total we’ve copied from left and right

• So we have the following indexes:
 int i1 = 0; // index for left
 int i2 = 0; // index for right

 int i = 0; // index for result (equals i1 + i2)

10

19

Merging sorted halves

20

Merge halves code
• So now we’ll update our previous code to use a loop and

our indexes

 int i1 = 0;
 int i2 = 0;
 for (int i = 0; i < result.length; i++) {
 if (left[i1] <= right[i2]) {
 result[i] = left[i1];
 i1++;
 } else {
 result[i] = right[i2];
 i2++;
 }
 }

But this doesn’t
quite work!

11

21

Merge halves code
• Right now, our code always compares a value from left with

a value from right

• Because we’re copying a single value into result per loop
iteration, we’ll finish copying all the values from one of the
sorted lists before the other

• So we also need to check if we’ve copied all the values from
a list
–  if we’ve already copied all the values from left, copy the value

from right
–  if we’ve already copied all the values from right, copy the value

from left

22

Merge halves code
• Updated merge code:
 int i1 = 0; // index into left array
 int i2 = 0; // index into right array

 for (int i = 0; i < result.length; i++) {
 if (i2 >= right.length ||
 (i1 < left.length && left[i1] <= right[i2])) {
 result[i] = left[i1];
 i1++;
 } else {
 result[i] = right[i2];
 i2++;
 }
 }

This code is a little
subtle. It relies on the

short-circuiting property
of && and ||

12

23

Merge halves code
// Merges the left/right elements into a sorted result.
// Precondition: left/right are sorted
private static void merge(int[] result, int[] left,
 int[] right) {
 int i1 = 0; // index into left array
 int i2 = 0; // index into right array

 for (int i = 0; i < result.length; i++) {
 if (i2 >= right.length ||
 (i1 < left.length && left[i1] <= right[i2])) {
 result[i] = left[i1]; // take from left
 i1++;
 } else {
 result[i] = right[i2]; // take from right
 i2++;
 }
 }
}

24

merge‘s Preconditions
•  Our merge method has some preconditions

–  Both left and right must already be sorted
–  result’s length must equal left’s length plus right’s length

• What if the client violates the preconditions?
–  This is a private method—only we can use the method! We can ensure

that the method is only called with valid input.
–  We’re just going to settle for only commenting these preconditions

•  Updated comment:
 // pre: left and right are sorted
 // result.length == left.length + right.length
 // post: copies the values from left and right
 // into result so that the values in result
 // are in sorted order

13

25

Merge Sort
• Recall that merge sort consists of the following steps:

–  divide a list into two halves
–  sort the halves
–  recombine the sorted halves into a sorted whole

•  Let’s define our public sort method:
 // post: sorts the given array into non-decreasing order

 public static void mergeSort(int[] list) {

 ...

 }

26

Dividing the List in Half
• The Arrays class has a useful method called copyOfRange:

// split array into two halves
int[] left = Arrays.copyOfRange(a, 0, a.length/2);
int[] right = Arrays.copyOfRange(a, a.length/2, a.length);

14

27

Merge sort code
// Rearranges the elements of a into sorted order using
// the merge sort algorithm.
public static void mergeSort(int[] a) {
 // split array into two halves
 int[] left = Arrays.copyOfRange(a, 0, a.length/2);
 int[] right = Arrays.copyOfRange(a, a.length/2, a.length);

 // sort the two halves
 ...

 // merge the sorted halves into a sorted whole
 merge(a, left, right);
}

28

Merge sort code 2
// Rearranges the elements of a into sorted order using
// the merge sort algorithm (recursive).
public static void mergeSort(int[] a) {
 if (a.length >= 2) {
 // split array into two halves
 int[] left = Arrays.copyOfRange(a, 0, a.length/2);
 int[] right = Arrays.copyOfRange(a, a.length/2, a.length);

 // sort the two halves
 mergeSort(left);
 mergeSort(right);

 // merge the sorted halves into a sorted whole
 merge(a, left, right);
 }
}

15

29

Complexity of Merge Sort
• To determine the time complexity, let’s break our merge

sort into pieces and analyze the pieces

• Remember, merge sort consists of:
–  divide a list into two halves
–  sort the halves
–  recombine the sorted halves into a sorted whole

• Dividing the list and recombining the lists are pretty easy
to analyze
–  both have O(n) time complexity

• But what about sorting the halves?

30

Complexity of Merge Sort
• We can think of merge sort as occurring in levels

–  at the first level, we want to sort the whole list
–  at the second level, we want to sort the two half lists
–  at the third level, we want to sort the four quarter lists
–  ...

• We know there’s O(n) work at each level from dividing/
recombining the lists

• But how many levels are there?
–  if we can figure this out, our time complexity is just

O(n * num_levels)

16

31

Complexity of Merge Sort
• Because we divide the array in half each time, there are log(n)

levels

• So merge sort is an O(n log(n)) algorithm
–  this is a big improvement over the O(n2) sorting algorithms

log(n)
levels

O(n) work at each level

32

Merge sort runtime
• What is the complexity class (Big-Oh) of merge sort?

