
1

CSE 143
Lecture 16

More Recursive Backtracking

slides created by Marty Stepp and Ethan Apter
http://www.cs.washington.edu/143/

2

The "8 Queens" problem
• Consider the problem of trying to place 8 queens on a chess

board such that no queen can attack another queen.

–  What are the "choices"?

–  How do we "make" or
"un-make" a choice?

–  How do we know when
to stop?

Q

Q

Q

Q

Q

Q

Q

Q

2

3

Naive algorithm
•  for (each square on board):

–  Place a queen there.
–  Try to place the rest

of the queens.
–  Un-place the queen.

–  How large is the
solution space for
this algorithm?
• 64 * 63 * 62 * ...

1 2 3 4 5 6 7 8

1 Q

2

3 ...

4

5

6

7

8

4

Better algorithm idea
• Observation: In a working

solution, exactly 1 queen
must appear in each
row and in
each column.

–  Redefine a "choice"
to be valid placement
of a queen in a
particular column.

–  How large is the
solution space now?
• 8 * 8 * 8 * ...

1 2 3 4 5 6 7 8

1 Q

2

3 Q ...

4 ...

5 Q

6

7

8

3

5

Exercise
• Suppose we have a Board class with the following methods:

• Write a method solveQueens that accepts a Board as a
parameter and tries to place 8 queens on it safely.
–  Your method should stop exploring if it finds a solution.

Method/Constructor Description
public Board(int size) construct empty board
public boolean isSafe(int row, int
column)

true if queen can be
safely placed here

public void place(int row, int column) place queen here
public void remove(int row, int column) remove queen from here
public String toString() text display of board

6

Exercise solution
// Searches for a solution to the 8 queens problem
// with this board, reporting the first result found.
public static void solveQueens(Board board) {
 if (!explore(board, 1)) {
 System.out.println("No solution found.");
 } else {
 System.out.println("One solution is as follows:");
 System.out.println(board);
 }
}

...

4

7

Exercise solution, cont'd.
// Recursively searches for a solution to 8 queens on this
// board, starting with the given column, returning true if a
// solution is found and storing that solution in the board.
// PRE: queens have been safely placed in columns 1 to (col-1)
public static boolean explore(Board board, int col) {
 if (col > board.size()) {
 return true; // base case: all columns are placed
 } else {
 // recursive case: place a queen in this column
 for (int row = 1; row <= board.size(); row++) {
 if (board.isSafe(row, col)) {
 board.place(row, col); // choose
 if (explore(board, col + 1)) { // explore
 return true; // solution found
 }
 b.remove(row, col); // un-choose
 }
 }
 return false; // no solution found
 }
}

8

Anagrams
• anagram: a rearrangement of the letters from a word or

phrase to form another word or phrase

• Consider the phrase “word or phrase”
–  one anagram of “word or phrase” is “sparrow horde”

s p a r r o w h o r d e

w o r d o r p h r a s e

5

9

AnagramSolver

• Consider the phrase “Ada Lovelace”

• Some anagrams of “Ada Lovelace” are:
–  “ace dale oval”
–  “coda lava eel”
–  “lace lava ode”

• We could think of each anagram as a list of words:
–  “ace dale oval” [ace, dale, oval]
–  “coda lava eel” [coda, lava, eel]
–  “lace lava ode” [lace, lava, ode]

10

AnagramSolver

• Consider also the following dictionary:

ail
alga

angular
ant

coda
eel
gal

gala
giant

gin

gnat
lace
lain
lava
love

lunar
nag

natural
nit

ruin

run
rung
tag
tail
tan

tang
tin
up

urn

6

11

AnagramSolver

• Which is the first word in this list that could be part of an
anagram of “Ada Lovelace”

–  ail
• no: “Ada Lovelace” doesn’t contain an “i”

–  alga
• no: “Ada Lovelace” doesn’t contain a “g”

–  angular
• no: “Ada Lovelace” doesn’t contain an “n”, a “g”, a “u”, or an “r”

–  ant
• no: “Ada Lovelace” doesn’t contain an “n” or a “t”

–  coda
• yes: “Ada Lovelace” contains all the letters in “coda”

12

AnagramSolver

• This is just like making a choice in recursive backtracking:

Which could be the first word in our anagram?

ail alga angular ant

coda eel etc...

Which could be the second word in our
anagram?

ail alga angular ant

coda eel etc...

7

13

AnagramSolver

• At each level, we go through all possible words
–  but the letters we have left to work with changes!

Which could be in an anagram of “Ada Lovelace”?

ail alga angular ant

coda eel etc...

Which could be in an anagram of “a Lvelae”?

ail alga angular ant

coda eel etc...

14

Low-Level Details
• There are some low level details here in deciding whether one

phrase contains the same letters as another

•  Just like 8 Queens had the Board class for its low-level
details, we’ll have a class that handles the low-level details
of AnagramSolver

• This low-level detail class is called LetterInventory
–  Now where have I seen that before…

8

15

AnagramSolver

• Key questions to ask yourself on this assignment:
–  When am I done?

• for 8 Queens, we were done when we reached column 9

–  If I’m not done, what are my options?
• for 8 Queens, the options were the possible rows for this column

–  How do I make and un-make choices?
• for 8 Queens, this was placing and removing queens

16

AnagramSolver

• You must include two optimizations in your assignment
–  because backtracking is inefficient, we need to gain some

speed where we can

• You must preprocess the dictionary into
LetterInventorys
–  you’ll store these in a Map

• specifically, in a HashMap, which is slightly faster than a TreeMap

• You must prune the dictionary before starting the recursion
–  by “prune,” we mean remove all the words that couldn’t

possibly be in an anagram of the given phrase
–  you need do this only once (before starting the recursion)

