
1

CSE 143
Lecture 17

Binary Trees

slides created by Marty Stepp and Alyssa Harding
http://www.cs.washington.edu/143/

2

Trees
•  tree: A directed, acyclic structure of linked nodes.

–  directed : Has one-way links between nodes.
–  acyclic : No path wraps back around to the same node twice.

• A binary tree can be defined as either:
–  empty (null), or
–  a root node that contains:

• data,
• a left subtree, and
• a right subtree.

–  (The left and/or right
subtree could be empty.) 7 6

3 2

1

5 4

root

2

3

Definition is recursive!

• The recursive definition lets us build any shape tree:

4

Trees in computer science
•  folders/files on a computer
•  family genealogy; organizational charts
• AI: decision trees
•  compilers: parse tree

–  a = (b + c) * d;

d +

* a

=

c b

3

5

Programming with trees
• Trees are a mixture of linked lists and recursion

–  considered very elegant once understood
–  difficult for novices to master

• Common student remark #1:
–  "My code doesn't work, and I don't know why."

• Common student remark #2:
–  "My code works, and I don't know why."

6

Terminology

•  root: topmost node of the tree

•  leaf: node with no children

• branch: any internal node;
 neither the root nor a leaf

9 21

30 78

5

29

82 16

Leaf nodes

Root node

Branch nodes

4

7

Terminology

•  child: Any node our node
refers to

• parent: the node that refers
to our node

•  sibling: another child of the
parent of our node

9 21

30 78

5

29

82 16

Looking at our 78 node:

child

parent
sibling

8

A tree node for integers
• A basic tree node object stores data and refers to left/right

• Multiple nodes can be linked together into a larger tree

left data right

42

left data right

42

left data right

59

left data right

27

left data right

86

5

9

IntTreeNode class
// An IntTreeNode object is one node in a binary tree of ints.
public class IntTreeNode {
 public int data; // data stored at this node
 public IntTreeNode left; // reference to left subtree
 public IntTreeNode right; // reference to right subtree

 // Constructs a leaf node with the given data.
 public IntTreeNode(int data) {
 this(data, null, null);
 }

 // Constructs a branch node with the given data and links.
 public IntTreeNode(int data, IntTreeNode left,
 IntTreeNode right) {
 this.data = data;
 this.left = left;
 this.right = right;
 }
}

10

IntTree class
// An IntTree object represents an entire binary tree of ints.
public class IntTree {
 private IntTreeNode overallRoot; // null for an empty tree

 <methods>
}

–  Client code talks to the IntTree,
not to the node objects inside it

–  Methods of the IntTree create
and manipulate the nodes,
their data and links between them 7 6

3 2

1

5 4

overallRoot

6

11

IntTree constructor
• Assume we have the following constructor:

 public IntTree(int height)

that will create a tree and fill it with nodes with random data values
from 1-100 until it is full at the given height.

 IntTree tree = new IntTree(3);

40 81

9 41

17

6 29

overallRoot

12

Exercise
• Add a method print to the IntTree class that prints the

elements of the tree, separated by spaces.
–  A node's left subtree should be printed before it, and its right

subtree should be printed after it.

–  Example: tree.print();

 29 41 6 17 81 9 40

40 81

9 41

17

6 29

overallRoot

7

13

Exercise solution
// An IntTree object represents an entire binary tree of ints.
public class IntTree {
 private IntTreeNode overallRoot; // null for an empty tree
 ...

 public void print() {
 print(overallRoot);
 System.out.println(); // end the line of output
 }

 private void print(IntTreeNode root) {
 // (base case is implicitly to do nothing on null)
 if (root != null) {
 // recursive case: print left, center, right
 print(root.left);
 System.out.print(root.data + " ");
 print(root.right);
 }
 }
}

14

Template for tree methods

public class IntTree {
 private IntTreeNode overallRoot;
 ...

 public <type> <name>(<parameters>) {
 name(overallRoot, <parameters>);
 }

 private <type> <name>(IntTreeNode root, <parameters>) {
 ...
 }
}

• Tree methods are often implemented recursively
–  with a public/private pair
–  the private version accepts the root node to process

8

15

Traversals
•  traversal: An examination of the elements of a tree.

–  But in what order? Root first? Left subtree first? …

• Common orderings for traversals:
–  pre-order: process root node, then its left/right subtrees
–  in-order: process left subtree, then root node, then right
–  post-order: process left/right subtrees, then root node

40 81

9 41

17

6 29

overallRoot

16

Traversal example

•  pre-order: 17 41 29 6 9 81 40
•  in-order: 29 41 6 17 81 9 40
•  post-order: 29 6 41 81 40 9 17

40 81

9 41

17

6 29

overallRoot

9

17

Sailboat Method
• To quickly generate a traversal:

–  Trace a path around the tree.
–  As you pass a node on the

proper side, process it.

• pre-order: left side
•  in-order: bottom
• post-order: right side

•  pre-order: 17 41 29 6 9 81 40
•  in-order: 29 41 6 17 81 9 40
•  post-order: 29 6 41 81 40 9 17

40 81

9 41

17

6 29

overallRoot

18

• Give pre-, in-, and post-order
traversals for the following tree:

–  pre: 42 15 27 48 9 86 12 5 3 39
–  in: 15 48 27 42 86 5 12 9 3 39
–  post: 48 27 15 5 12 86 39 3 9 42

Exercise

3 86

9 15

42

27

48

overallRoot

12 39

5

10

19

Exercise
• Add a method named printSideways to the IntTree class

that prints the tree in a sideways indented format, with right
nodes above roots above left nodes, with each level 4 spaces
more indented than the one above it.

–  Example: Output from the tree below:

19 11

14 6

9

7

overall root

 19

 14
 11

9
 7

 6

20

Exercise solution
// Prints the tree in a sideways indented format.
public void printSideways() {
 printSideways(overallRoot, "");
}

private void printSideways(IntTreeNode root,
 String indent) {
 if (root != null) {
 printSideways(root.right, indent + " ");
 System.out.println(indent + root.data);
 printSideways(root.left, indent + " ");
 }
}

